• 제목/요약/키워드: 하계 전력 수요 예측

검색결과 9건 처리시간 0.024초

Enhancing Summer Electricity Demand Forecasting Using Fourier Transform-Based Time Variables

  • Jae-Ho Shin;Hyun-Uk Seol;Han-Byeol Jo;Jong-Kwon Jo;Sung-Ju Kim;Byoung-Ho Jang;Young-Soon Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권11호
    • /
    • pp.31-40
    • /
    • 2024
  • 높은 기온으로 인해 냉방부하가 상승하는 하절기의 낮에는 시간당 전력 수요가 증가하고 밤에는 낮에 비해 상대적으로 전력수요가 적은 특징을 보인다. 이러한 특징은 하계 전력 수요 예측에 있어 중요한 정보로 간주한다. 그러나 시간 정보를 단순히 더미변수로 표현할 경우, 모델은 시간의 변화를 학습하기보다는 단순히 시간대 간의 차이를 인식하는 데 그치게 된다. 본 연구에서는 이러한 문제를 해결하기 위해 푸리에 변환을 활용하여 시간 변수를 사용한 방식으로 접근하고자 한다. 푸리에 변환을 이용한 시간 변수는 시간 간의 차이를 효과적으로 학습할 수 있을 것이다. BiGRU 모델을 사용하여 2022년과 2023년의 하계 전력 수요예측에 시간 변수의 형식에 따른 평가를 수행한 결과 푸리에 변환을 사용한 시간 변수를 사용한 모델이 MAPE 2.01%, 2.04%로 가장 우수한 성능을 보이는 것을 확인하였다. 본 연구의 결과는 전력 사용량이 증가하는 하절기의 전력 사용량 예측 정확도를 높여, 대규모 정전 사태와 같은 문제를 방지할 수 있을 것으로 기대한다.

SOFM신경망을 이용한 최대수요전력 예측과 퍼지제어에 관한 연구 (A Study on the Forcasting and Fuzzy Control of Maximum demand Power Using SOFM Neural Networks)

  • 조성원;안준식;석진욱
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.427-432
    • /
    • 1998
  • 최근 산업발전에 따라 야기되는 문제점 중 전력수요의 증가에 의한 피해가 증대되고 있다. 여름철 하계부하등에 의한 과부하는 가정이나 대형건물의 정전을 발생시키거나 공장의 기계를 파손시키기도 하기 때문에 이를 미연에 방지할 수 있는 부하예측기법이 점차로 강조되고 있는 현실이다. 이에 본 논문에서는 초(sec)단위의 순시부하예측/제어를 위한 새로운 방법과 퍼지제어기를 제안한다. 제안한 순시부하예측/제어는 크게 과거의 데이터를 가지고 일정시간 후의 값을 예측하는 예측부와 이 결과의 신뢰도를 높여주기 위한 퍼지제어기로나눌 수 있다. 예측부는 SOFM (Self-Organizing Feature Map) 신경망을 이용하며, 예측된 출력값을 퍼지제어기의 입력으로 사용한다.

  • PDF

기상 변수를 고려한 모델에 의한 단기 최대전력수요예측 (Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable)

  • 고희석;이충식;최종규;지봉호
    • 융합신호처리학회논문지
    • /
    • 제2권3호
    • /
    • pp.73-78
    • /
    • 2001
  • 특수일 부하를 예측하기 위하여 BP 신경회로망 모형과 다중 회귀모형을 구성한다. 신경회로망 모형은 패턴 변환비를 이용하고, 다중회귀 모형은 평일 환산비를 이용하여 특수일 부하를 예측한다. 주간 피크 부하예측 모형에 패턴 변환비를 이용하여 짧고 긴 특수일 부하를 예측 한 결과 주간 평균 오차율이 1∼2[%]로 나와 본 기법의 적합성을 확인할 수 있다. 하지만, 패턴 변환비 방법으로는 하계의 특수일 부하 예측은 어려웠다. 따라서 기온-습도, 불쾌지수 등을 설명변수로 하는 다중 회귀 모형을 구성하고 평일 환산비를 이용하여 하계의 특수일 부하를 예측한다. 평일만의 예측 모형과 예측 결과를 비교해 보면 월 평균 오차율이 비슷하게 나와 이용한 방법의 적합성을 확인하였다. 그리고, 통계적 검정을 통해 구성한 예측 모형의 유효성을 입증할 수 있었다. 이로서 본 연구에서 제시한 특수일 부하를 예측하는 기법의 적합성을 확인함으로서 피크 부하 예측시 큰 난점 중의 하나가 해결되었다.

  • PDF

동계 전력사용량에 대한 분석과 PV DSM (Analysis of Winter Electric Usage & PV DSM)

  • 이종현;안종욱;김성호;고원석;김진호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.447-449
    • /
    • 2008
  • 미래에 예측되는 수요를 보다 바람직한 방향으로 개선하고자 시행하는 제반활동을 의미하는 전력수요관리는 고유가와 온실가스 문제가 큰 현안이 된 지금의 상황에 비추어 볼 때 그 중요성이 날로 커지고 있다고 할 수 있다. 그러나 현재의 수요관리 시스템은 하계의 수급문제 해결에 그 초점이 맞춰져 있으며, 현재 문제가 되고 있는 동계 전력수급문제에 대해서는 특별한 관리 대책이 없는 상황이다 따라서 동계 수요관리를 위한 수요관리자원 발굴 작업이 시급하며, 그 대책중의 하나로 PV(Photovoltaics) DSM(Demand Side Management)를 제안하고, 실제 건물에 적용 시 그 효과에 대하여 알아보았다.

  • PDF

우리나라 전력수요 패턴의 장단기 변화 실적에 대한 연구 (A Study on Changing Patterns of Short-run and Long-run Electricity Demand in Korea)

  • 김권수;박종인;박채수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.435-438
    • /
    • 2008
  • 우리나라 최대전력은 70년대 연도별로 36만 kW, 약 15%씩 증가하였으나, 최근 2000년대에는 연도별로 300만kW 이상, 약 6%대의 증가를 보이고 있다. 발생시간도 70년대에는 저녁시간대에 주로 발생했으나 80년대부터 최근까지는 15시에 하계 최대전력이 발생하고 있다 아울러 최근에는 기상의 변동폭 증가로 여름과 겨울의 계절성이 증폭되는 추세에 있고 이러한 최대전력 발생의 이면에는 시간별 부하패턴이 다양하게 나타나고 있다. 과거 70-80년대에는 연간이나 월간 부하패턴 모두 평균전력대비 변동폭이 크게 나타났으나 최근에는 변동폭이 상당히 작아지고 있다. 이는 최대전력에 못지않게 전력소비량이 지속적으로 증가하여 부하수준이 평준화되고, 부하율이 높아지고 있다는 것을 나타내며 연중 및 일간 피크 발생시점도 다변화되는 특징을 보이고 있다. 따라서 이러한 부하패턴 변화에 합리적으로 대응하기 위해서는 짧은 기간의 부하관리보다는 상시 수요관리인 효율향상 위주의 프로그램이 필요하고, 저렴한 전기 요금의 정상화를 통한 전력소비 감축을 통한 대응이 중요하다. 외국의 사례를 보면 우리나라 냉방 및 난방전력은 현재보다 10%p-20%p 정도 점유비가 추가적으로 상승할 개연성이 높으므로 다양한 시나리오 예측을 통한 철저한 위험관리 체계 확립이 요구된다.

  • PDF

기온데이터를 이용한 하계 단기 전력수요예측 (Short-term Electric Load Forecasting using temperature data in Summer Season)

  • 구본길;이흥석;이상욱;이화석;박준호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.300-301
    • /
    • 2015
  • Accurate and robust load forecasting model plays very important role in power system operation. In case of short-term electric load forecasting, its results offer standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve accuracy of load forecasting. This paper proposes a newly forecasting model for weather sensitive season including temperature and Cooling Degree Hour(C.D.H) data as an input. This Forecasting model consists of previous electric load and preprocessed temperature, constant, parameter. It optimizes load forecasting model to fit actual load by PSO and results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows better performance than comparison groups.

  • PDF

ARIMA모델 기반 생활 기상지수를 이용한 동·하계 최대 전력 수요 예측 알고리즘 개발 (Development of ARIMA-based Forecasting Algorithms using Meteorological Indices for Seasonal Peak Load)

  • 정현철;정재성;강병오
    • 전기학회논문지
    • /
    • 제67권10호
    • /
    • pp.1257-1264
    • /
    • 2018
  • This paper proposes Autoregressive Integrated Moving Average (ARIMA)-based forecasting algorithms using meteorological indices to predict seasonal peak load. First of all, this paper observes a seasonal pattern of the peak load that appears intensively in winter and summer, and generates ARIMA models to predict the peak load of summer and winter. In addition, this paper also proposes hybrid ARIMA-based models (ARIMA-Hybrid) using a discomfort index and a sensible temperature to enhance the conventional ARIMA model. To verify the proposed algorithm, both ARIMA and ARIMA-Hybrid models are developed based on peak load data obtained from 2006 to 2015 and their forecasting results are compared by using the peak load in 2016. The simulation result indicates that the proposed ARIMA-Hybrid models shows the relatively improved performance than the conventional ARIMA model.

하계 특수경부하기간의 단기 전력수요예측 (Short-Term Load Forecast for Summer Special Light-Load Period)

  • 박정도;송경빈
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.482-488
    • /
    • 2013
  • Load forecasting is essential to the economical and the stable power system operations. In general, the forecasting days can be classified into weekdays, weekends, special days and special light-load periods in short-term load forecast. Special light-load periods are the consecutive holidays such as Lunar New Years holidays, Korean Thanksgiving holidays and summer special light-load period. For the weekdays and the weekends forecast, the conventional methods based on the statistics are mainly used and show excellent results for the most part. The forecast algorithms for special days yield good results also but its forecast error is relatively high than the results of the weekdays and the weekends forecast methods. For summer special light-load period, none of the previous studies have been performed ever before so if the conventional methods are applied to this period, forecasting errors of the conventional methods are considerably high. Therefore, short-term load forecast for summer special light-load period have mainly relied on the experience of power system operation experts. In this study, the trends of load profiles during summer special light-load period are classified into three patterns and new forecast algorithms for each pattern are suggested. The proposed method was tested with the last ten years' summer special light-load periods. The simulation results show the excellent average forecast error near 2%.

기온 데이터를 이용한 하계 단기전력수요예측 (Short-term Electric Load Forecasting for Summer Season using Temperature Data)

  • 구본길;김형수;이흥석;박준호
    • 전기학회논문지
    • /
    • 제64권8호
    • /
    • pp.1137-1144
    • /
    • 2015
  • Accurate and robust load forecasting model is very important in power system operation. In case of short-term electric load forecasting, its result is offered as an standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve forecasting accuracy. In order to achieve accurate forecasting result for summer season, this paper proposes a forecasting model using corrected effective temperature based on Heat Index and CDH data as inputs. To do so, we establish polynomial that expressing relationship among CDH, load, temperature. After that, we estimate parameters that is multiplied to each of the terms using PSO algorithm. The forecasting results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows more accurate by 1.018%, 0.269%, 0.132% than comparison groups, respectively.