Jae-Ho Shin;Hyun-Uk Seol;Han-Byeol Jo;Jong-Kwon Jo;Sung-Ju Kim;Byoung-Ho Jang;Young-Soon Kim
Journal of the Korea Society of Computer and Information
/
v.29
no.11
/
pp.31-40
/
2024
In the summer, when the cooling load rises due to high temperatures, the hourly demand increases during the day and is relatively less at night compared to the day. These characteristics are considered important information in predicting summer electricity demand. However, if time information is simply expressed as a dummy variable, the model simply recognizes differences between time zones rather than learning changes in time. In this study, we would like to approach this problem by using a time variable using the Fourier transform. Time variables using the Fourier transform will be able to effectively learn differences between times. As a result of evaluating the type of time variable in the summer electricity demand forecast for 2022 and 2023 using the BiGRU model, the model using the time variable using Fourier transform showed the best performance with MAPE of 2.01% and 2.04% confirmed. The results of this study are expected to improve prediction accuracy in the summer when power usage increases and prevent problems such as large-scale power outages.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.10a
/
pp.427-432
/
1998
최근 산업발전에 따라 야기되는 문제점 중 전력수요의 증가에 의한 피해가 증대되고 있다. 여름철 하계부하등에 의한 과부하는 가정이나 대형건물의 정전을 발생시키거나 공장의 기계를 파손시키기도 하기 때문에 이를 미연에 방지할 수 있는 부하예측기법이 점차로 강조되고 있는 현실이다. 이에 본 논문에서는 초(sec)단위의 순시부하예측/제어를 위한 새로운 방법과 퍼지제어기를 제안한다. 제안한 순시부하예측/제어는 크게 과거의 데이터를 가지고 일정시간 후의 값을 예측하는 예측부와 이 결과의 신뢰도를 높여주기 위한 퍼지제어기로나눌 수 있다. 예측부는 SOFM (Self-Organizing Feature Map) 신경망을 이용하며, 예측된 출력값을 퍼지제어기의 입력으로 사용한다.
Journal of the Institute of Convergence Signal Processing
/
v.2
no.3
/
pp.73-78
/
2001
BP neural network model and multiple-regression model were composed for forecasting the special-days load. Special-days load was forecasted using that neural network model made use of pattern conversion ratio and multiple-regression made use of weekday-change ratio. This methods identified the suitable as that special-days load of short and long term was forecasted with the weekly average percentage error of 1∼2[%] in the weekly peak load forecasting model using pattern conversion ratio. But this methods were hard with special-days load forecasting of summertime. therefore it was forecasted with the multiple-regression models. This models were used to the weekday-change ratio, and the temperature-humidity and discomfort-index as explanatory variable. This methods identified the suitable as that compared forecasting result of weekday load with forecasting result of special-days load because months average percentage error was alike. And, the fit of the presented forecast models using statistical tests had been proved. Big difficult problem of peak load forecasting had been solved that because identified the fit of the methods of special-days load forecasting in the paper presented.
미래에 예측되는 수요를 보다 바람직한 방향으로 개선하고자 시행하는 제반활동을 의미하는 전력수요관리는 고유가와 온실가스 문제가 큰 현안이 된 지금의 상황에 비추어 볼 때 그 중요성이 날로 커지고 있다고 할 수 있다. 그러나 현재의 수요관리 시스템은 하계의 수급문제 해결에 그 초점이 맞춰져 있으며, 현재 문제가 되고 있는 동계 전력수급문제에 대해서는 특별한 관리 대책이 없는 상황이다 따라서 동계 수요관리를 위한 수요관리자원 발굴 작업이 시급하며, 그 대책중의 하나로 PV(Photovoltaics) DSM(Demand Side Management)를 제안하고, 실제 건물에 적용 시 그 효과에 대하여 알아보았다.
우리나라 최대전력은 70년대 연도별로 36만 kW, 약 15%씩 증가하였으나, 최근 2000년대에는 연도별로 300만kW 이상, 약 6%대의 증가를 보이고 있다. 발생시간도 70년대에는 저녁시간대에 주로 발생했으나 80년대부터 최근까지는 15시에 하계 최대전력이 발생하고 있다 아울러 최근에는 기상의 변동폭 증가로 여름과 겨울의 계절성이 증폭되는 추세에 있고 이러한 최대전력 발생의 이면에는 시간별 부하패턴이 다양하게 나타나고 있다. 과거 70-80년대에는 연간이나 월간 부하패턴 모두 평균전력대비 변동폭이 크게 나타났으나 최근에는 변동폭이 상당히 작아지고 있다. 이는 최대전력에 못지않게 전력소비량이 지속적으로 증가하여 부하수준이 평준화되고, 부하율이 높아지고 있다는 것을 나타내며 연중 및 일간 피크 발생시점도 다변화되는 특징을 보이고 있다. 따라서 이러한 부하패턴 변화에 합리적으로 대응하기 위해서는 짧은 기간의 부하관리보다는 상시 수요관리인 효율향상 위주의 프로그램이 필요하고, 저렴한 전기 요금의 정상화를 통한 전력소비 감축을 통한 대응이 중요하다. 외국의 사례를 보면 우리나라 냉방 및 난방전력은 현재보다 10%p-20%p 정도 점유비가 추가적으로 상승할 개연성이 높으므로 다양한 시나리오 예측을 통한 철저한 위험관리 체계 확립이 요구된다.
Accurate and robust load forecasting model plays very important role in power system operation. In case of short-term electric load forecasting, its results offer standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve accuracy of load forecasting. This paper proposes a newly forecasting model for weather sensitive season including temperature and Cooling Degree Hour(C.D.H) data as an input. This Forecasting model consists of previous electric load and preprocessed temperature, constant, parameter. It optimizes load forecasting model to fit actual load by PSO and results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows better performance than comparison groups.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.10
/
pp.1257-1264
/
2018
This paper proposes Autoregressive Integrated Moving Average (ARIMA)-based forecasting algorithms using meteorological indices to predict seasonal peak load. First of all, this paper observes a seasonal pattern of the peak load that appears intensively in winter and summer, and generates ARIMA models to predict the peak load of summer and winter. In addition, this paper also proposes hybrid ARIMA-based models (ARIMA-Hybrid) using a discomfort index and a sensible temperature to enhance the conventional ARIMA model. To verify the proposed algorithm, both ARIMA and ARIMA-Hybrid models are developed based on peak load data obtained from 2006 to 2015 and their forecasting results are compared by using the peak load in 2016. The simulation result indicates that the proposed ARIMA-Hybrid models shows the relatively improved performance than the conventional ARIMA model.
The Transactions of The Korean Institute of Electrical Engineers
/
v.62
no.4
/
pp.482-488
/
2013
Load forecasting is essential to the economical and the stable power system operations. In general, the forecasting days can be classified into weekdays, weekends, special days and special light-load periods in short-term load forecast. Special light-load periods are the consecutive holidays such as Lunar New Years holidays, Korean Thanksgiving holidays and summer special light-load period. For the weekdays and the weekends forecast, the conventional methods based on the statistics are mainly used and show excellent results for the most part. The forecast algorithms for special days yield good results also but its forecast error is relatively high than the results of the weekdays and the weekends forecast methods. For summer special light-load period, none of the previous studies have been performed ever before so if the conventional methods are applied to this period, forecasting errors of the conventional methods are considerably high. Therefore, short-term load forecast for summer special light-load period have mainly relied on the experience of power system operation experts. In this study, the trends of load profiles during summer special light-load period are classified into three patterns and new forecast algorithms for each pattern are suggested. The proposed method was tested with the last ten years' summer special light-load periods. The simulation results show the excellent average forecast error near 2%.
The Transactions of The Korean Institute of Electrical Engineers
/
v.64
no.8
/
pp.1137-1144
/
2015
Accurate and robust load forecasting model is very important in power system operation. In case of short-term electric load forecasting, its result is offered as an standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve forecasting accuracy. In order to achieve accurate forecasting result for summer season, this paper proposes a forecasting model using corrected effective temperature based on Heat Index and CDH data as inputs. To do so, we establish polynomial that expressing relationship among CDH, load, temperature. After that, we estimate parameters that is multiplied to each of the terms using PSO algorithm. The forecasting results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows more accurate by 1.018%, 0.269%, 0.132% than comparison groups, respectively.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.