• Title/Summary/Keyword: 필로티 건축물

Search Result 20, Processing Time 0.02 seconds

Dynamic Analysis of RC Piloti-Type Building Subjected to Earthquake Loads (지진하중이 작용하는 RC 필로티 건축물의 동적해석)

  • Kim, Ju-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.3
    • /
    • pp.121-128
    • /
    • 2021
  • Piloti-type buildings in Korea are usually composed of lower frames and upper shear wall structures. Piloti-type buildings have been seriously damaged during earthquakes because of the construction of soft and weak stories. Piloti-type buildings with edge cores are two-way unsymmetric planes. This paper analyzed and obtained the dynamic response for structures modeled using a multistory two-way asymmetric system. The numerical results, obtained using the Newmark-β method, show the time-history responses and trends of maximum displacements and shear forces. The purpose of this study is to evaluate the effect of reinforcement on dynamic response when a shear wall or brace is reinforced in the corner opposite the piloti.

Seismic Performance of Piloti-Type Structures with Columns Strengthened with Aramid Fiber Sheets (아라미드 섬유시트로 기둥 보강된 필로티 구조물의 내진성능 평가)

  • Keun-Hyeok Yang;Ju-Hyun Mun;Chae-Rim Im;Kwang-Geun Rho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.201-210
    • /
    • 2023
  • This study is to evaluate the ductility strengthening effect of aramid fiber sheets on piloti-type structures. Two piloti-type structure specimens were prepared and tested under statical cyclic lateral loads. The ductility strengthening effect was validated from the analysis of lateral load-displacement relationship, displacement ductility ratio, work damage index and torsion behavior. Test results showed that the post-peak behavior of piloti-type structures with columns strengthened with aramid fiber sheets tended to be ductile resulting from preventing shear failure and minimizing torsion due to the effective lateral confinement of column concrete by aramid fiber sheet. Consequently, the displacement ductility ratio and work damage index of piloti-type structures with columns with strengthened with aramid fiber sheets were 4.63 and 42.81 times higher than those of non strengthened piloti-type structures.

Trial Construction for the Prevention of Fire Spread in Piloti Building (필로티건축물의 화재확산방지를 위한 시범시공)

  • Lee, Byeong-Heun;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.87-88
    • /
    • 2019
  • In case of Korea, The Large-scale fire is consistently being such as 2015 Uijeongbu Fire, 2017 Jecheon Fire, 2018 Sejong Hospital Fire. Such a fire has a problem that the fire is spreading upper due to external flame spread. As a countermeasure the fire safety, the study about axial temperature prediction of external flame spread is consistently doing. But in korea, Vertical spandrel is specified as 40cm, and improvement is urgently needed. In this study, a repair material was selected to prevent the fire from spreading to a building where a flammable exterior material was installed and then pilot construction was carried out. Also, fire safety measures for buildings constructed with flammable exterior materials were examined.

  • PDF

Development of Preliminary Seismic Performance Evaluation Method for Residential Piloti Buildings Using Stiffness-Based Soft Story Ratios (강성기반 연층비를 활용한 주거형 필로티 건축물의 내진성능예비평가 기법 개발)

  • Choi, Jae-Hyuk;Choi, Insub;Kim, JunHee;Sohn, JungHoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.175-182
    • /
    • 2021
  • There have been many instances of damage to buildings with soft stories, and it is important to consider vertically irregular buildings when evaluating the seismic performance of existing buildings. However, because conventional methods do not easily reflect vertical irregularities with sufficient accuracy, it is possible to underestimate or overestimate the seismic performance of buildings with vertical irregularities. This study aims to develop a seismic performance evaluation method for vertically irregular buildings using the stiffness-based soft story ratio (SSR), which is a parameter that represents the ratio of the demand and the capacity for displacement and refers to the ratio of displacement concentration in buildings. The seismic performance evaluation method developed in this study is compared with the conventional seismic performance evaluation method for four piloti buildings, using the first-floor column as a variable. Conventional seismic performance evaluation methods often overestimate the seismic performance for models in which vertical irregularities are maximized. However, results of the proposed seismic performance evaluation method are identical to those from a detailed evaluation for all models. Therefore, it is considered that the proposed seismic performance evaluation method can provide more precise seismic performance evaluation results than conventional methods in the case of piloti buildings, where vertical irregularities are maximized.

Efficient Analysis of Shear Wall with Piloti (필로티가 있는 전단벽의 효율적인 해석)

  • 김현수;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.387-399
    • /
    • 2003
  • The box system that consists only of reinforced concrete walls and slabs we adopted in many high-rise apartment buildings recently constructed in Korea. Recently, many of the box system buildings with pilotis has been constructed to meet the architectural design requirements. This structure has abrupt change in the structural properties between the upper and lower parts divided by transfer girders. For an accurate analysis of a structure with pilotis, it is necessary to have the buildings modeled into a finer mesh. But it would cost tremendous amount of computational time and memory. In this study, an efficient method is proposed for an efficient analysis of buildings those have pilotis with drastically reduced time and memory. In the proposed analysis method, transfer gilders are modeled using super elements developed by the matrix condensation technique and fictitious beams are introduced to enforce the compatibility conditions at the boundary of each element. The analyses of example structures demonstrated that the proposed method used for the analysis of a structure with pilotis will provide analysis results with accuracy for the design of box system buildings.

Seismic Retrofitting of Existing Reinforced Concrete Columns Using Binding Column Method (외부부착형 BCM공법으로 보강된 철근콘크리트 기둥의 내진보강)

  • Hur, Moo-Won;Park, Tae-Won;Lee, Sang-Hyun;Park, Hyun-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.119-126
    • /
    • 2022
  • This study proposed a BCM(Binding Column Method) that can reinforce the insufficient seismic force of piloti buildings that are not designed for seismic resistance. In addition, 4 reinforcement specimens and 1 reference specimen were manufactured for the proposed seismic reinforcement method. The effect of improving seismic performance before and after reinforcement was examined through repeated loading tests. As a result of experiment, seismic reinforcement specimen with BCM system showed hysteretic characteristics of a large ellipse with great energy dissipation ability and increased strength and stiffness, while reference specimen showed rapid reduction in strength and brittle shear failure column. In addition, it can be seen that the reinforcing effect is improved as the gap is narrow, the torque is large, and the thickness of the L-shaped steel sheet is thicker. The SC4 specimen showed the best seismic performance reinforcement effect.

A Study for the Development Direction of Building Industry in Preparation for Earthquake Disaster (지진재난 대비를 위한 건축 산업의 발전방향에 대한 고찰)

  • Han, Dong-ho;Kim, Jong Kouk
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.1
    • /
    • pp.307-314
    • /
    • 2018
  • It became clear that Korean peninsula is not a safe region anymore from an earthquake disaster after Gyeongju and Pohang Earthquake in 2016-2017. Unfortunately, building industry in Korea has not been well prepared for an earthquake disaster and the following problems exist. First, the rate of buildings with proper seismic performance is relatively low. Second, the number of piloti buildings which are vulnerable to earthquake and fire disaster has increased recently. Third, the proportion of small-scale buildings excluded from the application of the building law for securing safety is too high. Fourth, widespread corruption and poor construction impede safety. Therefore, measures to prepare for earthquake disaster are as follows. First, methods of reinforcing building structures and reducing the seismic load acting on a building should be utilized in order to secure the insufficient seismic performance of buildings vulnerable to earthquakes. Second, whistleblowers should be encouraged and protected to prevent defective construction due to corruption. To this end, whistleblowers should be recognized as an effective means of protecting public interest not the traitor to the organization.

A Study on the Analysis of Fire Risk and Field Survey for FilottI Structures (필로티 구조물의 화재위험성 분석 및 현장조사에 관한 연구)

  • Han, Ji-Woo;Lee, Byeong-heun;Jin, Seung-Hyeon;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.45-46
    • /
    • 2018
  • The fire at the pilotis parking lot shows the fire propagation paths that are propagated to the ceiling materials and insulation materials and propagated through the external walls. In addition, there is a high risk of fire caused by vehicles with high combustion loads spreading throughout the parking lot. In particular, the omission of the ceiling materials at the parking lot in recent fire cases has contributed to the spread of the fire. In this study, the combustion performance of the ceiling materials between the insulation material and the vehicle is considered to prevent fire from spreading. Based on field research, the type of ceiling material used in the piloti structure showed that SMC ceiling materials have the highest percentage. Combustion performance test (KS F ISO 5660-1) was carried out on the SMC ceiling materials and the AL ceiling materials to review the fire safety of the ceiling finish based on the field investigation. The results of the test showed that the SMC ceiling materials has a THR 28.973[MJ/㎡] and peek HRR 273.93 [kW/㎡], while the AL ceiling material has a THR 0.584[MJ/㎡] and peek HRR 15.215[kW/㎡].

  • PDF