DOI QR코드

DOI QR Code

Seismic Performance of Piloti-Type Structures with Columns Strengthened with Aramid Fiber Sheets

아라미드 섬유시트로 기둥 보강된 필로티 구조물의 내진성능 평가

  • 양근혁 (경기대학교 스마트시티공학부 건축공학전공) ;
  • 문주현 (경기대학교 스마트시티공학부 건축공학전공) ;
  • 임채림 (경기대학교 일반대학원 건축공학과) ;
  • 노광근 ((주)희상리인포스)
  • Received : 2023.11.29
  • Accepted : 2023.12.11
  • Published : 2023.12.31

Abstract

This study is to evaluate the ductility strengthening effect of aramid fiber sheets on piloti-type structures. Two piloti-type structure specimens were prepared and tested under statical cyclic lateral loads. The ductility strengthening effect was validated from the analysis of lateral load-displacement relationship, displacement ductility ratio, work damage index and torsion behavior. Test results showed that the post-peak behavior of piloti-type structures with columns strengthened with aramid fiber sheets tended to be ductile resulting from preventing shear failure and minimizing torsion due to the effective lateral confinement of column concrete by aramid fiber sheet. Consequently, the displacement ductility ratio and work damage index of piloti-type structures with columns with strengthened with aramid fiber sheets were 4.63 and 42.81 times higher than those of non strengthened piloti-type structures.

이 연구의 목적은 필로티 건축물에서 아라미드 섬유시트의 연성보강 효과를 평가하는데에 있다. 필로티 구조물은 총 2개가 제작되었으며, 반복 횡하중 정적 실험으로 휨 거동을 평가하였다. 연성보강 효과는 횡하중-변위관계, 변위연성비, 일손상지수 및 비틀림 거동으로부터 검증되었다. 실험결과 기둥이 아라미드 섬유시트로 보강된 필로티 건축물은 최대하중 이후 기둥에서 효과적인 구속효과로 전단파괴 방지 및 비틀림이 최소화되었으며, 전반적으로 연성적인 거동을 보였다. 결과적으로 기둥이 아라미드 섬유시트로 보강된 필로티 건축물의 변위연성비 및 일손상지수는 보강되지 않은 필로티 건축물보다 각각 4.63배 및 42.81배 높았다.

Keywords

Acknowledgement

본 연구는 희상리인포스의 연구비 지원으로 수행되었습니다.

References

  1. ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary, American Concrete Institute(ACI), USA.
  2. Antoniou, S. (2023), Seismic Retrofit of Existing Reinforced Concrete Buildings, Wiley-Blackwell, USA.
  3. ASTM A1035/A1035M (2020), Standard Specification for Deformed and Plain, Low-Carbon, Chromium, Steel Bars for Concrete Reinforcement, ASTM International, USA.
  4. Baek, E. L., Oh, S. H., and Lee, S. H. (2014), Seismic Performance of an Existing Low-Rise Reinforced Concrete Piloti Building Retrofitted by Steel Rod Damper, Journal of the Earthquake Engineering Society of Korea, 18(5), 241-251 (In Korean). https://doi.org/10.5000/EESK.2014.18.5.241
  5. Choi, K. E., Kim, M. J., Kim, D. S., Kim, H. G., and Kim, K. H. (2022), An Experimental Study on Torsional Behavior of Reinforced Concrete Beams Strengthened by GFRP Sheets, Journal of the Korea Concrete Institute, 34(1), 33-42 (In Korean). https://doi.org/10.4334/JKCI.2022.34.1.033
  6. Dang-Vu, H., Shin, J., and Lee, K. (2020), Seismic Fragility Assessment of Columns in a Piloti-Type Building Retrofitted with Additional Shear Walls, Sustainability, 12(16), 1-19. https://doi.org/10.3390/su12166530
  7. Faustino, P., Frade, P., and Chastre, C. (2016), Lateral Cyclic Behaviour of RC Columns Confined with Carbon Fibres, Structures, 5, 196-206. https://doi.org/10.1016/j.istruc.2015.11.004
  8. Federal Emergency Management Agency (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings (FEMA 356), FEMA, USA.
  9. Federal Emergency Management Agency (2003), NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Buildings (FEMA 450), FEMA, USA.
  10. Korea Agency for Technology and Standards (2022), Test Method for Compressive Strength of Concrete (KS F 2405), Korea Standard Association, Korea.
  11. Kim, S. Y., Chun, Y. S., Han, C. H., and Mun, J. Y. (2020), A Study on Seismic Ductility Reinforcing Method of Piloti Structure for the Multi-Unit Housing, Land & Housing Institute(LH), Korea.
  12. Kim, Y. J., Micnhimer, D., and Park, H. G. (2021), Sparse Grid Modeling of Carbon Fiber-Reinforced Polymer-Strengthened Pilotis under Biaxial Load, ACI Structural Journal, 118(6), 19-32. https://doi.org/10.14359/51728190
  13. Lee, K. H., and Jeong, S. H. (2012), A Study on the Static Eccentricities of Buildings Designed by Different Design Eccentricities, Journal of the Earthquake Engineering Society of Korea, 16(5), 33-40 (In Korean). https://doi.org/10.5000/EESK.2012.16.5.033
  14. Lee, H. S., and Ko, D. W. (2002), Shaking Table Tests of a High-Rise RC Bearing-Wall Structure with Bottom Piloti Stories, Journal of Asian Architecture and Building Engineering, 1(1), 47-54. https://doi.org/10.3130/jaabe.1.47
  15. Lee, H. S., and Ko, D. W. (2007), Seismic Response Characteristics of High-Rise RC Wall Buildings Having Different Irregularities in Lower Stories, Engineering Structures, 29(11), 3149-3167. https://doi.org/10.1016/j.engstruct.2007.02.014
  16. Sheikh, S. A., and Khoury, S. S. (1997), A Performance-Based Approach for the Design of Confining Steel in Tied Columns, ACI Structural Journal, 94(4), 421-432. https://doi.org/10.14359/493
  17. Shin, J., Lee, K., Jeong, S. H., Lee, H. S., and Kim, J. (2012), Experimental and Analytical Studies on Buckling-Restrained Knee Bracing Systems with Channel Sections, International Journal of Steel Structures, 12(1), 93-106. https://doi.org/10.1007/s13296-012-1009-Y
  18. Stathopoulos, K. G., and Anagnostopoulos, S. A. (2010), Accidental Design Eccentricity: Is It Important for the Inelastic Response of Buildings to Strong Earthquakes, Soil Dynamics and Earthquake Engineering, 30(9), 782-797. https://doi.org/10.1016/j.soildyn.2009.12.018
  19. Tastani, S. P., and Pantazopoulou, S. J. (2008), Detailing Procedures for Seismic Rehabilitation of Reinforced Concrete Members with Fiber Reinforced Polymers, Engineering Structures, 30(2), 450-461. https://doi.org/10.1016/j.engstruct.2007.03.028
  20. Yoo, S. H., and Kim, D. G. (2020), Analytical Study on the Seismic Retrofit Method of Irregular Piloti Building Using Knee-Brace, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(1), 35-42 (In Korean).
  21. Zhang, J., Wang, F., Zhao, D., Zhang, M., and Cao, W. (2023), Seismic Performance of Resilient Recycled Aggregate Piloti-Type Structure, Engineering Structures, 282, 1-16. https://doi.org/10.1016/j.engstruct.2023.115795