• Title/Summary/Keyword: 핀-튜브

Search Result 141, Processing Time 0.028 seconds

A Study on the Condensation Heat Transfer and Pressure Drop in Internally Grooved Tubes Used in Condenser (응축기용 낮은 핀관의 내부 나선 홈에 의한 응축 열전달 성능과 압력손실에 관한 연구)

  • Han, Kyuil;Cho, Dong-Hyun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.212-222
    • /
    • 1998
  • Heat transfer performance improvement by fin and groovs is studied for condensation of R-11 on integral-fin tubes. Eight tubes with trapczodially shaped integral-fins having fin density from 748 to 1654fpm(fin per meter) and 10, 30 grooves are tested. A plain tube having the same diameter as the finned tubes is also used for comparison. R-11 condensates at saturation state of 32 $^{\circ}C$ on the outside tube surface coded by inside water flow. All of test data are taken at steady state. The heat transfer loop is used for testing singe long tubes and cooling is pumped from a storage tank through filters and folwmeters to the horizontal test section where it is heated by steam condensing on the outside of the tubes. The pressure drop across the test section is measured by menas pressure gauge and manometer. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, overall heat transfer coefficients of finned tube are enhanced up to 1.6 ~ 3.7 times that of a plain tube at a constant Reynolds number. 2. Friction factors are up to 1.6 ~ 2.1 times those of plain tubes. 3. The constant pumping power ratio for the low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio. 4. A tube having a fin density of 1299fpm and 30 grooves has the best heat transfer performance.

  • PDF

Experimental Study on Thermal Characteristics of Heat Exchanger Modules for Multi Burner Boiler - Part Load Test Results - (멀티버너 보일러용 열교환기 모듈 특성 시험 - 부하별 특성 결과 -)

  • Kim, Jong-Jin;Sung, Choi-Kyu;Ki, Ho-Choong;Kang, Sae-Byul
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1025-1030
    • /
    • 2008
  • We develop heat exchanger modules for a multi-burner boiler. The heat exchanger module is kind of a heat recovery steam generator (HRSG). This heat recovery system has 4 heat exchanger modules. The 1st module consists of 27 bare tubes due to high temperature exhaust gas and the others consist of 27 finned tubes. The maximum steam pressure of each module is 10 bar and tested steam pressure is 4 bar. In order to test these heat exchanger modules, we make a 0.5t/h flue tube boiler (LNG, $40\;Nm^3/h$). The test results of 100% boiler load show that heat transfer rate of 1st module is 49.7 Mcal/h which is 34% of total heat transfer rate and that of 2nd module is 82.6 Mcal/h which is 57% of total heat transfer rate. The reason of higher the heat transfer rate of 2nd module than that of 1st module is that the 2nd heat exchanger module has finned tubes instead of bare tube. The boiler load 50% results show that only 2 heat exchanger modules are needed to extract the heat from the flue gas to water. From this result, it is very important of optimum design of the first finned tube among all water tubes.

  • PDF

Effect of Antifouling Composite Membrane on Membrane Bioreactor: A Review (방오성 복합막의 막생물반응기에 대한 영향)

  • Lee, Bo Woo;Lee, Sunwoo;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In membrane bioreactor (MBR), activated sludge degrade the biological component and membrane process separate this bacterial flocks as well the suspended solids. However, membrane fouling is one of the major issues in MBR. In this review, composite membrane used in MBR to overcome fouling is discussed. It is classified into membrane containing carbon and noncarbon materials. Introducing graphene, graphene oxide (GO) and carbon nanotubes or their modified part into pristine membrane enhance hydrophilicity of the composite membrane. Inorganic materials like silicon dioxide (SiO2) or titanium dioxide (TiO2) are also incorporated for preparing composite membrane to increase its water flux.

Performance analysis of a cold-air forced circulation type showcase (냉기 강제순환형 공랭식 쇼케이스 성능 해석)

  • Kim, Jeong-Sik;Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1003-1010
    • /
    • 2013
  • In this study, a simulation program was developed, which predicts the performance of cold-air forced circulation type air cooled showcase. The showcase has an excellent display effect in addition to preserving the grocery. In the program, the compressor was analyzed using performance data supplied by the manufacturer and the capillary tube pressure drop was analyzed using a homogeneous model. The evaporator and condenser were analyzed by dividing the heat exchangers into small elements, where energy balance and appropriate heat transfer correlations were used. A showcase model with two 3/4 HP compressors, capillary tubes of 1.6 mm inner diameter, a fin-and-tube evaporator and condenser was tested, and the results are compared with the predicted values. It is shown that both evaporation and condensation temperatures are adequately predicted by the program.

Review of Recent Advances in the Electrical/Mechanical Characteristics of Nanocomposites and Multi-scale Modeling of Nanocomposites (나노복합재료의 전기/역학적 특성과 예측을 위한 멀티스케일 모델링의 최신 연구 분석)

  • Taegeon Kil;Jin-Ho Bae;Hyun-No Yoon;Haeng-Ki Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.131-136
    • /
    • 2023
  • Nanocomposites have been considered innovative composite materials that have multi-functionality and high performance. Because the incorporation of nanoscale fillers may significantly improve the electrical, mechanical, and thermal properties of composites, numerous extensive studies on the characterization of nanocomposites with nanoscale fillers have been performed. In particular, the development of nanocomposites using carbon-based nanoscale fillers (e.g., carbon nanotubes, carbon black, graphene nanoplates) have attracted much interest in the composite field. This paper provides a review of recent advances in the electrical/mechanical characteristics of nanocomposites, which are essential for their practical applications. Furthermore, this paper revisits the recent research on multi-scale modeling, which is a promising approach for predicting the characteristics of nanocomposites. The current challenges and future development potentials for multi-scale modeling are also discussed.

Enzyme Immobilized Membrane Bioreactor for Removal of Dye: A Review (염료제거용 효소고정화막 생물반응기: 리뷰)

  • Yuhan Jeong;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.269-278
    • /
    • 2023
  • Enzyme Immobilized Membrane Bioreactors (EMBRs) are a novel method to treat dyes within wastewater. Due to their efficacy and high resistance to the environment, there has been a large amount of research being done in this area. There are a variety of ways to approach EMBRs that include both the enzyme itself and the structure of said enzymes. The bioreactor itself can be modified to suit the needs of the dye removal. Ranging from Enzymatic bioreactors to utilizing nanostructures such as graphene oxide or carbon nanotubes. Furthermore, nanoparticles such as TiO2 can be used to enhance the EMBR further as well. The polymer-based membrane supporting structure also includes a variety of different ways to approach the problem of increasing efficacy. As seen, during the past decades, different approaches to this issue that utilize EMBRs have been done. This review aims to summarize the methodologies and describe the various improvements to EMBRs that have been made.

Effect of Adding Graphene/Carbon Nanotubes (FCN) on the Mechanical Properties of Polyamide-Nylon 6 (그래핀/탄소나노튜브(FCN) 첨가에 따른 Polyamide-Nylon 6의 기계적 특성에 미치는 영향)

  • Seung-Jun Yeo;Hae-Reum Shin;Woo-Seung Noh;Man-Tae Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1297-1303
    • /
    • 2023
  • Research on enhancing the mechanical strength, lightweight properties, electrical conductivity, and thermal conductivity of composite materials by incorporating nano-materials is actively underway. Thermoplastic resins can change their form under heat, making them highly processable and recyclable. In this study, Polyamide-Nylon 6 (PA6), a thermoplastic resin, was utilized, and as reinforcing agents, fused carbon nano-materials (FCN) formed by structurally combining Carbon Nanotube(CNT) and Graphene were employed. Nano-materials often face challenges related to cohesion and dispersion. To address this issue, Silane functional groups were introduced to enhance the dispersion of FCN in PA6. The manufacturing conditions for the composite materials involved determining the use of a dispersant and varying FCN content at 0.05 wt%, 0.1 wt%, and 0.2 wt%. Tensile strength measurements were conducted, and FE-SEM analysis was performed on fracture surfaces. As a result of the tensile strength test, it was confirmed that compared to pure PA6, the strength of the polymer composite with a content of 0.05 wt% was improved by about 60%, for 0.1 wt%, about 65%, and for 0.2 wt%, the strength was improved by 50%. Also, when compared according to the content of FCN, the best strength value was shown when 0.1 wt% was added. The elastic modulus also showed an improvement of about 15% in the case of surface treatment compared to the case without surface treatment, and an improvement of about 70% compared to pure PA6. Through FE-SEM, it was confirmed that the matrix material and silane-modified nanomaterial improved the dispersibility and bonding strength of the interface, helping to support the load evenly and enabling effective stress transfer.

Reinforcement of Rubber Properties by Carbon Black and Silica Fillers: A Review

  • Seo, Gon;Kim, Do-Il;Kim, Sun Jung;Ryu, Changseok;Yang, Jae-Kyoung;Kang, Yong-Gu
    • Elastomers and Composites
    • /
    • v.52 no.2
    • /
    • pp.114-130
    • /
    • 2017
  • Enhancing the properties of rubber, such as the tensile strength, modulus, and wear abrasion, by the addition of carbon black and silica as fillers is very important for improving the performance of rubber products. In this review, we summarize the general features of 'the reinforcement of rubber by fillers' and the equations for representing the reinforcement phenomena. The rubber reinforcement was attributed to enhancement of the following: the rubber, bound rubber, formation of networks, and combination between rubber chains and silica followed by entanglement. The reinforcement capability of silica species with different surface and networked states demonstrated the importance of the connection between the silica particles and the rubber chains in achieving high reinforcement. The model involving combination followed by entanglement can provide a plausible explanation of the reinforcement of rubber by carbon black and silica because the combination facilitates the concentration of rubber chains near the filler particles, and entanglement of the rubber chains around the filler particles enforces the resistance against deformation and breakage of rubber compounds, resulting in high reinforcement.

A Study on Finned Tube Used in Turbo Refrigerator( I ) -for Condensation Hear Transfer- (터보 냉동기용 핀튜브에 관한 연구 ( I ) - 응축 열전달에 관하여 -)

  • Cho, Dong-Hyun;Han, Kyu-Il;Kim, Si-Young
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.5 no.1
    • /
    • pp.31-44
    • /
    • 1993
  • Through the early 1900's, the evolution of the surface condenser was closely tied to the development of steam engine and the turbine. As the chemical and petroleum industries evolved in the 1900's, the use of surface condensers in many different processes. Today, industry uses condensers in many shapes and sizes. The actual condensation process occurs on the outside surface of tubes. The nature of this surface geometry affects the condenser's heat transfer performance. The first condensers were built with plain tubes. As tube manufacturing techniques advanced, manufacturers started making tubes with integral fins. In the 1940's, fin densities were limited to about 600 to 700 fins per meter(fpm) because of manufacturing procedure. Today new manufacturing techniques allow production of tubes with fin densities ranging from 750 to 1600 fpm. The integral-fin tubes investigated in this paper are nominally 19 mm diameter. Eight tubes have been used with trapezodially shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. For comparison, tests are made using a plain tube having the same inside diameter and an outside diameter equal to that at the root of the fins for the finned tubes. Betty and Katz's theoretical modelis is used to predict the R-11 condensation coefficient on horizontal integral-fin tubes having 748, 1024 and 1299 fpm. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken at steady state. The observed heat transfer enhancement for the finned and grooved tubes significantly exceeded that to be expected on grounds of increased area. For the eight fin tubes and one plain tube tested, the best performance has been obtained with a tube having a fin density of 1299 fpm, and a fin bight of 1.2mm and 30 grooves.

  • PDF

Conductive Properties of Thermoplastic Carbon Fiber Reinforced Plastics Highly Filled with Carbon Fiber Fabrics and Conductive Carbon Fillers (탄소섬유 직물 및 전도성 탄소 필러가 고충진 된 열가소성 탄소섬유강화플라스틱의 전도 특성)

  • Kim, Seong Yun;Noh, Ye Ji;Jang, Ji-un;Choi, Seong Kyu
    • Composites Research
    • /
    • v.34 no.5
    • /
    • pp.290-295
    • /
    • 2021
  • The application of lightweight structural composites to automobiles as a solution in line with global fuel economy regulations to curb global warming is recognized as a megatrend. This study was conducted to provide a technical approach that can respond to the issue of replacing parts that require conductive properties to maximize the application of thermoplastic carbon fiber reinforced plastics (CFRPs), which are advantageous in terms of repair, disposal and recycling. By utilizing the properties of the low-viscosity polymerizable oligomer matrix, it was possible to prepare a thermoplastic CFRP exhibiting excellent impregnation properties while uniformly mixing the conductive filler. Various carbon-based conductive fillers such as carbon black, carbon nanotubes, graphene nanoplatelets, graphite, and pitch-based carbon fibers were filled up to the maximum content, and electrical and thermal conductive properties of the fabricated composites were compared and studied. It was confirmed that the maximum incorporation of filler was the most important factor to control the conductive properties of the composites rather than the type or shape of the conductive carbon filler. Experimental results were observed in which it might be advantageous to apply a one-dimensional conductive carbon filler to improve electrical conductivity, whereas it might be advantageous to apply a two-dimensional conductive carbon filler to improve thermal conductivity. The results of this study can provide potential insight into the optimization of structural design for controlling the conductive properties of thermoplastic CFRPs.