• Title/Summary/Keyword: 피폭 선량 저감화

Search Result 54, Processing Time 0.028 seconds

Research on Dose Reduction During Computed Tomography Scanning by CARE kV System and Bismuth (전산화 단층검사 시 Bismuth와 CARE kV System을 이용한 선량 저감화에 대한 연구)

  • Kwak, Yeong-Gon;Kim, Chong-Yeal;Jeong, Seong-Pyo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.8
    • /
    • pp.233-242
    • /
    • 2014
  • The purpose of this study is to compare the reduction of the dose radioactivity by CARE kV with that of the Bismuth shielding. First, CT was performed with transparent materials, including a Bismuth shielder which is a well-known material for decreasing the dose of radiation. Moreover, we have estimated and compared the affects of the reduction of dose on eye lens, thyroid, breast and genitals. These steps aim to compare reactions with and without the application of the Rando phantom with PLD as well as with CARE kV or not. As a result, during the Brain angio scan, the dose of CARE kV set inspection test methods showed the least dose. Depending on whether we use CARE kV, which showed the effect of dose reduction by 63%. During the Carotid angio scan, the dose was increased by 13% by how to set CARE kV+Bismuth. During the Cardiac angio scan, which showed the effect of dose reduction by 31% by how to set CARE kV+Bismuth. During the Lower extremity angio scan, the dose was measured least by how to set up the whole Bismuth. Compared with CARE kV set of test methods, which showed the effect of dose reduction by 9%.

Dose Reduction Method for Chest CT using a Combination of Examination Condition Control and Iterative Reconstruction (검사 조건 제어와 반복 재구성의 조합을 이용한 흉부 CT의 선량 저감화 방안)

  • Sang-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1025-1031
    • /
    • 2023
  • We aimed to evaluate the radiation dose and image quality by changing the Scout view voltage in low-dose chest CT (LDCT) and applying scan parameters such as AEC (auto exposure control) and ASIR (adaptive statistical iterative reconstruction) to find the optimal protocol. Scout view voltage was varied at 80, 100, 120, 140 kV and after measuring the dose 5 times using the existing low-dose chest CT protocol, the appropriate kV was selected for the study using the Dose report provided by the equipment. After taking a basic LDCT shot at 120 kV, 30 mAs, ASIR 50% was applied to this condition. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed by measuring Background noise (B/N). For dose comparison, CTDIvol and DLP provided by the equipment were compared and analyzed using the formulas. The results indicated that the protocol of scout 140 + LDCT + ASIR 50 + AEC reduced radiation exposure and improved image quality compared to traditional LDCT, providing an optimal protocol. As demonstrated in the experiment, LDCT screenings for asymptomatic normal individuals are crucial, as they involve concerns over excessive radiation exposure per examination. Therefore, applying appropriate parameters is important, and it is expected to contribute positively to the public health in future LDCT based health screenings.

Image Evaluation for Optimization of Radiological Protection in CBCT during Image-Guided Radiation Therapy (영상유도 방사선 치료 시 CBCT에서 방사선 방호최적화를 위한 영상평가)

  • Min-Ho Choi;Kyung-Wan Kim;Dong-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.305-314
    • /
    • 2023
  • With the development of medical technology and radiation treatment equipment, the frequency of high-precision radiation therapy such as intensity modulation radiation therapy has increased. Image-guided radiation therapy has become essential for radiation therapy in precise and complex treatment plans. In particular, with the introduction of imaging equipment for diagnosis in a linear accelerator, CBCT scanning became possible, which made it possible to calibrate and correct the patient's posture through 3D images. Although more precise reproduction of the patient's posture has become possible, the exposure dose delivered to the patient during the image acquisition process cannot be ignored. Radiation optimization is necessary in the field of radiation therapy, and efforts to reduce exposure are necessary. However, when acquiring 3D CBCT images by changing the imaging conditions to reduce exposure, there should be no image quality or artefacts that would make it impossible to align the patient's position. In this study, Rando phantom was used to scan and evaluate images for each shooting condition. The highest SNR was obtained at 100 kV 80 mA 25 ms F1 filter 180°. As the tube voltage and tube current increased, the noise decreased, and the bowtie filter showed the optimal effect at high tube current. Based on the actual scanned images, it was confirmed that patient alignment was possible under all imaging conditions, and that image-guided radiation therapy for patient alignment was possible under the condition of 70 kV 10 mA 20 ms F0 filter 180°, which showed the lowest SNR. In this study, image evaluation was conducted according to the imaging conditions, and low tube voltage, tube current, and small rotation angle scan are expected to be effective in reducing radiation exposure. Based on this, the patient's exposure dose should be kept as low as possible during CBCT imaging.

Evaluation of Absorbed Dose according to the Use of Bolus in Opposite Breast during Radiation Therapy of Breast Cancer using VMAT (VMAT를 이용한 유방암 방사선치료 시 반대편 유방의 Bolus 사용에 따른 흡수선량 평가)

  • Kim, Jong-Bo;Shin, Sang-Hwa
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.6
    • /
    • pp.763-768
    • /
    • 2018
  • Although the development of radiation therapy techniques has made the treatment more precise, exposure by radiation is unavoidable beyond the treatment site. In this study, we wanted to evaluate the absorbed dose according to the thickness of the bolus on the opposite side of the treatment in radiation treatment for breast cancer and to analyze the effect of dose reduction. An experiment was conducted on Rando phantom using VMAT treatment methods. Five points of A, B, C, D, and E were selected for the breast opposite the treatment, and when the dosimeters of 5, 10, 15, and 20 mm were used. The highest absorbed dose at point D closest to the treatment point was measured and lowest at point B furthest from the treatment point. The mean absorbed dose was 8.61 cGy When the bolus is not used and 8.10, 7.94, 8.06, and 8.10 cGy Depending on the thickness of the bolus. In this study, bolus was intended to be used to analyze the dose-reducing effects of breasts on the other side of the treatment. The results of the study showed the effect of dose reduction and the appropriate bolus thickness should be set up to reduce the dose in normal tissues.

A Study on the Mitigation of the Exposure Dose Applying Bolus Tracking in Brain Perfusion CT Scan (뇌 관류 CT검사에서 BolusTracking기법을 적용한 피폭선량 저감화에 관한 연구)

  • Kim, Ki-Jeong;Jung, Hong-Ryang;Lim, Cheong-Hwan;Hong, Dong-Hee;Shim, Jae-Goo;You, In-Gyu
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.353-358
    • /
    • 2014
  • This study was conducted to analyze the patient's exposed dose targeting the patients who had acute ischemic stroke symptoms and CT brain perfusion scan, by comparing fixed time technique and bolus tracking technique which was provided by the manufacturer and to identify the Time graph to implement the usability of contrast medium's tracking technique the best contrast enhancement intervals. $CTDI_{VOL}$ of PCT in patient appeared to be 431.72mGy in fixed scan delay protocol, whereas 323.61mGy in Bolus tracking technique. The value of DLP appeared to be $1243.47mGy{\cdot}cm$ in fixed scan delay protocol, whereas $932mGy{\cdot}cm$ in Bolus tracking technique. Time graph appeared to be various in fixed scan delay protocol, whereas the optimal time graph could be obtained in Bolus tracking. The exposure dose could be reduced by 25% applying Bolus tracking technique when taking brain perfusion CT scan.

The Necessity of Resetting the Filter Criteria for the Minimization of Dose Creep in Digital Imaging Systems (디지털 영상 시스템에서 선량 크리프 최소화를 위한 부가 필터 두께 권고 기준의 재설정에 대한 연구)

  • Kim, Kyo Tae;Kim, Kum Bae;Kang, Sang Sik;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.757-763
    • /
    • 2019
  • Recently, Following the recent development of flat panel detector with wide dynamic ranges, increasing numbers of healthcare providers have begun to use digital radiography. As a result, filter thickness standards should be reestablished, as current clinical practice requires the use of thicknesses recommended by the National Council on Radiation Protection and Measurements, which are based on information, acquired using conventional analog systems. Here we investigated the possibility of minimizing dose creep and optimizing patient dose using Al filters in digital radiography. The use of thicker Al filters resulted in a maximum 19.3% reduction in the entrance skin exposure dose when medical images with similar sharpness values were compared. However, resolution, which is a critical factor in imaging, had a significant change of 1.01 lp/mm. This change in resolution is thought to be due to the increased amount of scattered rays generated from the object due to the X-ray beam hardening effect. The increase in the number of scattered rays was verified using the scattering degradation factor. However, the FPD, which has recently been developed and is widely used in various areas, has greater response to radiation than analog devices and has a wide dynamic range. Therefore, the FPD is expected to maintain an appropriate level of resolution corresponding to the increase in the scattered-ray content ratio, which depends on filter thickness. Use of the FPD is also expected to minimize dose creep by reducing the exposure dose.

A study on the strategies to lower technologist occupational exposure according to the performance form in PET scan procedure (PET 검사실 종사자의 업무 행위 별 방사선피폭 조사에 따른 피폭선량 저감화를 위한 연구)

  • Ko, Hyun Soo;Kim, Ho Sung;Nam-Kung, Chang Kyeoung;Yoon, Soon Sang;Song, Jae Hyuk;Ryu, Jae Kwang;Jung, Woo Young;Chang, Jung Chan
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.17-29
    • /
    • 2015
  • Purpose For nuclear medicine technologists, it is difficult to stay away from or to separate from radiation sources comparing with workers who are using radiation generating devices. Nuclear medicine technologists work is recognized as an optimized way when they are familiar with work practices. The aims of this study are to measure radiation exposure of technologists working in PET and to evaluate the occupational radiation dose after implementation of strategies to lower exposure. Materials and Methods We divided into four working types by QC for PET, injection, scan and etc. in PET scan procedure. In QC of PET, we compared the radiation exposure controlling next to $^{68}Ge$ cylinder phantom directly to controlling the table in console room remotely. In injection, we compared the radiation exposure guiding patient in waiting room before injection to after injection. In scan procedure of PET, we compared the radiation exposure moving the table using the control button located next to the patient to moving the table using the control button located in the far distance. PERSONAL ELECTRONIC DOSEMETER (PED), Tracerco$^{TM}$ was used for measuring exposed radiation doses. Results The average doses of exposed radiation were $0.27{\pm}0.04{\mu}Sv$ when controlling the table directly and $0.13{\pm}0.14{\mu}Sv$ when controlling the table remotely while performing QC. The average doses of exposed radiation were $0.97{\pm}0.36{\mu}Sv$ when guiding patient after injection and $0.62{\pm}0.17{\mu}Sv$ when guiding patient before injection. The average doses of exposed radiation were $1.33{\pm}0.54{\mu}Sv$ when using the control button located next to the patient and $0.94{\pm}0.50{\mu}Sv$ when using the control button located in far distance while acquiring image. As a result, there were statistically significant differences(P<0.05). Conclusion: From this study, we found that how much radiation doses technologists are exposed on average at each step of PET procedure while working in PET center and how we can reduce the occupational radiation dose after implementation of strategies to lower exposure. And if we make effort to seek any other methods to reduce technologist occupational radiation, we can minimize and optimize exposed radiation doses in department of nuclear medicine. Conclusion From this study, we found that how much radiation doses technologists are exposed on average at each step of PET procedure while working in PET center and how we can reduce the occupational radiation dose after implementation of strategies to lower exposure. And if we make effort to seek any other methods to reduce technologist occupational radiation, we can minimize and optimize exposed radiation doses in department of nuclear medicine.

  • PDF

Evaluation of the Space Scattered Dose According to the Position of the Radiation Workers in Mammography Room (유방촬영 시 방사선관계종사자의 위치에 따른 공간선량평가)

  • Lee, Dong-Yeon;Lee, Jin-Soo
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.297-303
    • /
    • 2016
  • This study was conducted to evaluate the dose of the space to the controller located within the mammography room conducted a research on ways to the reduction exposure to the radiation workers. Results, the dose of 6.18 mGy/year was measured when there is no difference in the hilar area of the controller position, the dose of 2.35E-11 mGy/year was measured when installing the Shielding door. In addition, when the direction of the X-ray tube anode be heading this direction controller, low average level measured was 0.30 mGy/year. Based on this study, the mammography should be considered when installing the anode and cathod directions. And, by installing the shielding door, it must be able to completely separate shooting space and control room. This is the best way radiation protection method in radiation workers.

Awareness and Consciousness Survey of Worker's for Radiation Exposure Dose Reduction from Pediatric Brain CT Examination (소아두부 컴퓨터단층촬영검사에서 방사선피폭선량 저감화를 위한 근무자의 인식도와 의식도 조사)

  • Kim, Hyeon-Jin;Lee, Hyo-Yeong;Im, In-Chul;Yu, Yun-Sik
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.3
    • /
    • pp.207-214
    • /
    • 2016
  • In this study, it was an investigation of the degree of awareness and consciousness of the radiology technicians about radiation protection working in the computed tomography room in Busan when the pediatric underwent brain CT scan. It was sorted by university hospital, general hospital and hospital and compared the scores of awareness and consciousness. As a result of awareness, university hospital had the highest point of 42.29 followed by general hospital and hospital of 38.43 and 34.06 respectively. On the other hand, the average score of consciousness was the highest in hospital of 29.19 followed by general hospital and university hospital of 24.68 and 21.37 respectively. It is considered to need assistance to cultivate an awareness of the radiation through refresher training and conferences, etc in order to increase the awareness of the general hospitals and hospitals for CT workers. In addition, it is also expected to pay for efforts to increase the consciousness of CT workers in university hospitals seeking the optimization of radiation protection and dose reduction of radiation exposure for the pediatric.

The Study of Forward Scattering Dose according to the Thickness of Filter in General Radiography (일반촬영 검사에서 필터 두께 증가에 따른 전방산란율에 관한 연구)

  • Choi, Il Hong;Kim, Kyo Tae;Heo, Ye Ji;Kang, Sang Sik;Noh, Si Cheol;Jung, Bong Jae;Nam, Sang Hee;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.445-448
    • /
    • 2015
  • Recently there has been increasing interest in the filter to reduce the proportion of low-energy photons in the polychromatic X-ray, affect the quality of the image quality by X-ray hardening effect is a situation that has been overlooked. In this study, by evaluating the change in FSR based on the filter and it was quantitatively discuss scatter dose affecting the medical image quality. The results of the experiment, as the thickness of the filter is increased, up to 13.9%p, that tends to FSR increases appearance were evaluated. Based on these results, in compliance with the thickness of the filter that has been recommended in KS standard, even while reducing the radiation dose of the patient, in addition to the noise to about 1%p within the FSR only medical image the contribution to it is conceivable. Therefore, even while reducing radiation dose of the patient, in order to improve the quality of the medical image, the use of appropriate filter is considered important.