• Title/Summary/Keyword: 피폭저감

Search Result 146, Processing Time 0.013 seconds

Study on Research for Reducing Radiation Dose of Head and Neck for Cephalometric Radiography System (두부규격방사선촬영장치의 두경부 피폭 저감에 대한 연구)

  • OH, Yoonjin;Shin, Jae-won;Lee, Samyol
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.291-298
    • /
    • 2016
  • Recently, the interest in the orthodontic treatment for children is increased by a rise in national income level. The number of cephalometric radiography that could diagnose a malocclusion and malposition between teeth and jawbone increased. It required attention to radiation exposure, because the subject of dental examination is children which are more sensitive to radiation and the head and neck, the object of that include radiation sensitive organ such as the thyroid, bone marrow, eyes, salivary gland, and so on. In this study, we measured two-dimensional dose distribution in cephalometric radiography system (VATEC Pax-400C) using Agfa CP-G Plus film and MagicMax Dosimeter, and calculated radiation organ dose of head and neck through MCNPX simulation. And then we designed a radiation protective device to decrease radiation dose. The dose distribution of the cephalometric radiography system irradiated the head and neck overall as well as the oral and maxillofacial parts. The radiation organ dose calculated that thyroid, oesophagus and eyes are irradiated high, and the radiation organ dose decreased about 70 ~ 80% by the application of the radiation protective device. The results of this study will be used construction of database for dental radiation exposure and research of reducing radiation dose.

An Optimization Study on the Radiation Management in Nuclear Power Plants (원자력 발전소 방사선 관리의 최적화에 관한 연구)

  • Song, Jong-Soon
    • Journal of Radiation Protection and Research
    • /
    • v.18 no.1
    • /
    • pp.71-82
    • /
    • 1993
  • It is a fundamental element of the nuclear power plant operation to assess exactly the occupational radiation exposure. And, according to recently published ICRP 60 recommendation, it is needed to reduce individual radiaton exposure limit further. In this paper, an optimization techique was suggested for selection of alternatives for reducing occupational radiation exposure, and used in reviewing alternatives given by a plant utility. After the basic analysis, sensitivity analysis was performed to consider the variabilities of the economic variables. From the result, it was found that an option using steam generator nozzle dam and torquing machine was the best with respect to total benefits, and in case of multi-attribute utility analysis, an option using Co-No seal had the highest utility. Therefore, it was necessary to apply more than one technique togeter in optimization study and to consider qualitative factor, too.

  • PDF

Assessment of DRL for Computed Tomography in Local Hospital (지역병원에서의 전산화단층촬영 검사에 대한 DRL 평가)

  • Choi, Seok-Yoon
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.5
    • /
    • pp.619-625
    • /
    • 2022
  • In the field of imaging medicine, computed tomography is one of the most common test methods and one of the most frequently used test methods in hospitals. However, it is accompanied by a very high radiation exposure compared to other test methods. In order to reduce exposure, CT scans should be performed only when absolutely necessary, and even if the tests are performed because they are absolutely necessary, a protocol that serves the purpose of the test and allows the test to be performed in a small dose should be used. In this study, we wanted to learn about the most up-to-date radiation dose usage information used by the region's leading general hospitals and develop a diagnostic reference level (DRL). In the experimental results, the Head CT and Abdomen CT tests showed that DLP was higher than the NRPB (U.K) and Korean DRL. The DLP values used by Chest CT were low for all 3 types of CT devices. The hospital found that efforts to reduce exposure should be made during CT examinations, and in particular, Head CT and Abdomen CT determined that efforts to reduce exposure were necessary.

A Study on the Gonads Exposure Dose of Upper Extremity Examinations in Sitting Position (앉은 자세 상지 X-ray 검사(Sitting Position Upper Extremity X-ray Examinations)에서 피폭선량 저감화 연구)

  • Cho, Pyong-Kon
    • Journal of radiological science and technology
    • /
    • v.34 no.3
    • /
    • pp.189-193
    • /
    • 2011
  • Sitting position upper extremity X-ray examinations (SUEX) is the most widely used patient positioning method for upper extremity X-ray examinations. For this method, the radiation dose is considerable for relatively less interesting organs. We investigated whether patients need to wear the apron during the examination or not. We also studied the examination methods which can reduce the radiation dose. The results showed that radiation dose was reduced as the distance of source to patient becomes longer and the thickness of object grows higher.

Effects of Dose Reduction Fiber Shielding Cloth on Scattering Rays in Off-target Site during Angiography (선량저감섬유(Dose Reduction Fiber) 차폐포의 혈관조영술(Angiography) 시술 시 비 시술 부위의 산란선 차폐 효과)

  • Kim, Yong-Jin;Han, Sang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.393-400
    • /
    • 2020
  • Unlike conventional radiographic examinations, angiointerventional procedures have a high risk of radiation exposure to patients or operators due to prolonged radiation exposure time. This study was undertaken to examine effects of reducing the radiation risk by applying dose reduction fiber (DRF) shielding cloth during angiography. To investigate the properties of DRF shielding cloth, we measured the scattered radiation below and above a human phantom using a glass dosimeter, at site distances 10 cm away from the irradiated field. The results obtained reveal a 15 ~ 31% reduction of scattered radiation in the irradiation field, and 53 ~ 70% reduced radiation measured after phantom transmission. Taken together, our data indicate that application of DRF shielding cloth for radiation reduction at non-procedural sites during interventional procedure results in reduction of scattered doses to patients and operators, without affecting the medical examinations. We propose the use of DRF shielding during angiointerventional procedures, in order to reduce the risk of radiation exposure of patients and operators.