• Title/Summary/Keyword: 피에조센서

Search Result 48, Processing Time 0.022 seconds

Design of accelerated life test on temperature stress of piezoelectric sensor for monitoring high-level nuclear waste repository (고준위방사성폐기물 처분장 모니터링용 피에조센서의 온도 스트레스에 관한 가속수명시험 설계)

  • Hwang, Hyun-Joong;Park, Changhee;Hong, Chang-Ho;Kim, Jin-Seop;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.451-464
    • /
    • 2022
  • The high-level nuclear waste repository is a deep geological disposal system exposed to complex environmental conditions such as high temperature, radiation, and ground-water due to handling spent nuclear fuel. Continuous exposure can lead to cracking and deterioration of the structure over time. On the other hand, the high-level nuclear waste repository requires an ultra-long life expectancy. Thus long-term structural health monitoring is essential. Various sensors such as an accelerometer, earth pressure gauge, and displacement meter can be used to monitor the health of a structure, and a piezoelectric sensor is generally used. Therefore, it is necessary to develop a highly durable sensor based on the durability assessment of the piezoelectric sensor. This study designed an accelerated life test for durability assessment and life prediction of the piezoelectric sensor. Based on the literature review, the number of accelerated stress levels for a single stress factor, and the number of samples for each level were selected. The failure mode and mechanism of the piezoelectric sensor that can occur in the environmental conditions of the high-level waste repository were analyzed. In addition, two methods were proposed to investigate the maximum harsh condition for the temperature stress factor. The reliable operating limit of the piezoelectric sensor was derived, and a reasonable accelerated stress level was set for the accelerated life test. The suggested methods contain economical and practical ideas and can be widely used in designing accelerated life tests of piezoelectric sensors.

Life assessment of monitoring piezoelectric sensor under high temperature at high-level nuclear waste repository (고준위방사성폐기물 처분장 고온 환경 조건에 대한 모니터링용 피에조 센서의 수명 평가)

  • Changhee Park;Hyun-Joong Hwang;Chang-Ho Hong;Jin-Seop Kim;Gye-Chun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.509-523
    • /
    • 2023
  • The high-level nuclear waste (HLW) repository is exposed to complex environmental conditions consisting of high temperature, high humidity, and radiation, resulting in structural deterioration. Therefore, structural health monitoring is essential, and piezo sensors are used to detect cracks and estimate strength. However, since the monitoring sensors installed in the disposal tunnel and disposal container cannot be replaced or removed, the quantitative life of the monitoring sensor and its suitability must be assessed. In this study, the life of a piezo sensor for monitoring was assessed using an accelerated life test (ALT). The failure mode and mechanism of the piezo sensor under high temperature conditions were determined, and temperature stress's influence on the piezo sensor's life was analyzed. ALT was conducted on temperature stress and the relationship between temperature stress and piezo sensor life was suggested. The life of the piezo sensor was assessed using the Weibull probability distribution and the Arrhenius acceleration model. The suggested relationship can be used in multiple stress ALT designs for more precise life assessment.

A Study on AE Signal Analysis of Composite Materials Using Matrix Piezo Electric Sensor (매트릭스형 피에조센서를 이용한 복합재료 AE신호 분석에 관한 연구)

  • Yu, Yeun-Ho;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on non-destructive testing methods has become an important research area for improving their reliability and safety. AE (acoustic emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the initiation and growth of crack, plastic deformation, fiber breakage, matrix cleavage, or delamination. In the paper, AE signals generated under uniaxial tension were measured and analyzed using the $8{\times}8$ matrix piezo electric sensor. The electronic circuit to control the transmitting distance of AE signals was designed and constructed. The optical data storage system was also designed to store the AE signal of 64channels using LED (light emitting diode) elements. From the tests, it was shown that the source location and propagation path of AE signals in composite materials could be detected effectively by the $8{\times}8$ matrix piezo electric sensor.

Traffic Correction System Using Vehicle Axles Counts of Piezo Sensors (피에조센서의 차량 축 카운트를 활용한 교통량보정시스템)

  • Jung, Seung-Weon;Oh, Ju-Sam
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.277-283
    • /
    • 2021
  • Traffic data by vehicle classification are important data used as basic data in various fields such as road and traffic design. Traffic data is collected through permanent and temporary surveys and is provided as an annual average daily traffic (AATD) in the statistical yearbook of road traffic. permanent surveys are collected through traffic collection equipment (AVC), and the AVC consists of a loop sensor that detects traffic volume and a piezo sensor that detects the number of axes. Due to the nature of the buried type of traffic collection equipment, missing data is generated due to failure of detection equipment. In the existing method, it is corrected through historical data and the trend of traffic around the point. However, this method has a disadvantage in that it does not reflect temporal and spatial characteristics and that the existing data used for correction may also be a correction value. In this study, we proposed a method to correct the missing traffic volume by calculating the axis correction coefficient through the accumulated number of axes acquired by using a piezo sensor that can detect the axis of the vehicle. This has the advantage of being able to reflect temporal and spatial characteristics, which are the limitations of the existing methods, and as a result of comparative evaluation, the error rate was derived lower than that of the existing methods. The traffic volume correction system using axis count is judged as a correction method applicable to the field system with a simple algorithm.

Study on Relation of Optimum Resonant Frequencies between Piezo Ceramic and Matching Layer (피에조 세라믹과 매칭레이어와의 최적 공진주파수 관계에 대한 연구)

  • Kim, Kwon-Se;Choi, Doo-Seuk;Kim, Young-Choon;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.7
    • /
    • pp.3191-3196
    • /
    • 2013
  • Ultrasonic transducer is the sensor which is measuring distance. Piezo ceramic of ultrasonic sensor and adhesive technique of matching layer are the most core techniques. With the study of relation on matching layer which takes off the ultrasonic wave into the air, this paper aims to find the second useful frequency as the results which can be changed are extracted in case piezo ceramic and matching layer are bonded. And the experiment is done with piezo ceramic as real piezoelectric element and matching layer of chemical wood. OD of piezo ceramic has designed by ${\Phi}50{\times}3T$ and OD of matching layer is designed by ${\Phi}62{\times}12t$ with ${\lambda}=1/4$. Acoustic impedance is generated at the most optimum resonant frequency of 53 Khz. As experimental result, more available frequency can be generated by using the adhesive close to solid than the flexible one.

Design of Traffic Data Acquisition System with Loop Defector and Piezo-Electric Sensor (루프검지기와 피에조 센서를 이용한 차량정보 수집 시스템 설계)

  • 한경호;양승훈
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.6
    • /
    • pp.102-108
    • /
    • 2002
  • This paper handles the design of a real time traffic data acquisition system using loop detector and piezo-electric sensor to acquire the vehicle information EISA compatible parallel I/O interface card is designed to sample 30 I/O channels at variable rates for raw traffic data acquisition. The control software is designed to generate the traffic data informations from the raw data. The traffic data information provides vehicle length, speed, number of axles, etc. Vehicle types are detected and categorized into eleven types from the vehicle length, axles positions and axle counts information. The traffic information is formed into packet and transferred to the remote hosts through serial communications for ITS applications.

The Developement of a Wind Direction/Speed Measurement Equipment Using RTD or Piezo Sensors (RTD 및 피에조 센서를 활용하는 풍향/풍속 측정장치 개발)

  • Joo, Jae-Hun;Kim, Dong-Hyun;Gong, Byung-Gunn;Lee, Jin-Ho;Choi, Jung-Keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.827-830
    • /
    • 2011
  • In this paper, a wind speed & direction module and the DSP(Digital Signal Processor) sensor interface circuit board are proposed. This DSP system accepts and process the informations from a wind speed & direction module, the atmospheric pressure sensor, the ambient air temperature sensor and transfers it to the PC monitering system. Especially, a wind speed & direction module and a DSP hardware are directly designed and applied. A wind speed & direction module have a construction that it have four film type RTD(Resistive Temperature Detectors) or film type Piezo sensors adhered around the circular metal body for obtaining vector informations about wind. By this structure, the module is enabled precise measurement having a robustness about vibration, humidity, corrosion. A sensor signal processing circuit is using TMS320F2812 TI(Texas Instrument) Corporation high speed DSP.

  • PDF

Detection of Partial Discharge Acoustic Signal Using the Optical Fiber Interferometric Sensor (광섬유 간섭계 센서를 이용한 부분방전 음압 측정)

  • 이종길;박윤석;이준호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.7
    • /
    • pp.614-623
    • /
    • 2002
  • In this paper, it was manufactured an interferometric optical fiber sensor and measured partial discharge acoustic signal caused by defect of power facilities such as power cables, transformers and gas insulation. Acrylic and aluminium mandrels wound with fiber-optic were chosen as optical fiber sensor, Sagnac and Mach-Zehnder interferometers were chosen to detect discharge acoustic signals. The two fiber optic interferometers were identified by using the PZT. Discharge experimentation set in the discharge imitation cell in oil tank and the discharge phenomena was generated. Based on the experimental result, to detect the discharge acoustic signal, Sagnac interferometer can detect stably the acoustic signal than the Mach-Zehnder interferometer. It is shown that Sagnac optical fiber sensor can detect the discharge acoustic signals effectively.