• Title/Summary/Keyword: 피로 균열

Search Result 1,282, Processing Time 0.027 seconds

피로균열진전거동 평가를 위한 균열길이 측정법 - 직류전위차법

  • 한승호
    • Journal of the KSME
    • /
    • v.37 no.10
    • /
    • pp.41-46
    • /
    • 1997
  • 철강구조물 부재 내에 노치나 균열이 존재할 수 있고, 외부의 피로하중에 의하여 취약부에서 발생한 균열이 진전하여 전구조물의 최종파손을 야기시킬 수 있다. 부재를 보다 안전하게 사용하고 또한 신뢰성을 확보하기 위해서는 이미 손상된 부재에서 균열의 진전상태를 계측할 수 있는 방법이 확립되어져야 하고, 파괴역학적 파라미터를 이용한 사용재의 균열진전거동특성이 평가되어야 한다. 균열길이의 측정방법은 지금까지 많은 연구자들에 의하여 개발되어져 왔는데 크게 광학현미경을 이용하여 육안으로 직접 균열길이를 측정하는 방법과 컴플라이언스, 초음파, AE 또는 전기적 신호를 통하여 얻어진 결괄부터 균열길이로 환산하는 간접적인 방법으로 대별된다. 대부분의 균열길이의 측정방법은 많은 수작업이 요구되고, 특히 하한계응력확대계수영역의 미세한 균열진전량을 측정하기에는 어려움이 따르고 있다. 이에 대하여 전도체 시험편에 일정전류를 흐르게 하고 균열길이의 증가에 따라 변화하는 전위차로 이를 균열길이로 평가하는 전기적인 측정방법이 있다. 이 방법은 실험장치가 비교적 간단하고 미세한 균열길이의 측정이 용이하여 균열길이의 직접적인 측정이 곤란한 고온역 그리고 충격하중하에서의 균열길이 측정에 이용이 확대되고 있다. 이 글에서는 여러 균열길이 측정방법의 장.단점에 대하여 고찰하고, 그 중 많은 장점을 갖고 있는 직류전위차법의 실험방법을 소개한다.

  • PDF

A Study on Fatigue Crack Retardation Using NDT Test in a Hybrid Composite Material Reinforced with a CFRP (CFRP로 보강한 하이브리드 복합재료의 비파괴검사법을 이용한 피로균열 지연의 연구)

  • 윤한기;박원조;허정원
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 1999
  • New hybrid composite material CPAL(Carbon Patched ALuminum alloy), an Al2024-T3 plate doubleside reinforced with carbon/epoxy laminates were made. Fatigue crack growth tests were carried out at R=0.2, 0.5 in the CPAL specimens. The retardation mechanism and behavior of fatigue crack growth were examined basing on investigation of the crack and the delamination using a X-Ray and a ultrasonic C-Scan. The fatigue crack growth rates of CPAL specimens were remarkedly retarded compared to that of the Al2024-T3 specimen. The retardations amounts of the fatigue crack growth rates get higher in $0^{\circ}$/$90^{\circ}$ CPAL specimen than in $\pm$$45^{\circ}$ CPAL specimen, and get higher at R=0.2 than at R=0.5. The retardation of fatigue crack growth rates in CPAL specimen was generated by the crack bridging mechanism, that is the behavior that the fibers in CFRP layers decrease the COD in the Al2024-T3 plate.

  • PDF

Finite Element Analysis of Stage II Crack Growth and Branching in Fretting Fatigue (프레팅 피로에서 2단계 균열성장과 분지 유한요소해석)

  • Jung, Hyun Su;Cho, Sung-San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1137-1143
    • /
    • 2015
  • The stage II fretting fatigue crack growth and branching, i.e., the process of fretting fatigue crack growth starting in an inclined direction and then changing to the normal direction, is analyzed using the finite element method. The fretting fatigue experiment data of A7075-T6 are used in the analysis. The applicability of maximum tangential stress intensity factor, maximum tangential stress intensity factor range, and maximum crack growth rate as the crack growth direction criteria is examined. It is revealed that the stage II crack growth before and after the branching cannot be simulated with a single criterion, but can be done when different criteria are applied to the two stages of crack growth. Moreover, a method to determine the crack length at which the branching occurs is proposed.

Evaluation of Corrosion Fatigue Crack Propagation Characteristics at Equivalent Potential of Zinc Sacrificial Anode (아연(Zn)희생양극 등가전위에서 부식피로균열 진전특성에 관한 연구)

  • Won Beom Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.363-368
    • /
    • 2024
  • Steel structures used in marine environments, such as ships, offshore structures or sub-structures in wind power generation facilities are prone to corrosion. In this study, the corrosion fatigue crack propagation characteristics due to the environmental load are examined by experiment at -1050 mV vs. SCE, which is equivalent to the anti-corrosion potential of zinc anodes that are widely used as sacrificial anodes. In this study, for this purpose, an experimental study is conducted on the effect of cathodic protection on the propagation of fatigue cracks in the seawater environment under the condition of -1050 mV vs. SCE, considering the wave period in synthetic seawater. Cathodic protection prevents corrosion; however, excessive protection generates hydrogen through chemical reactions as well as calcareous deposits. The fatigue crack propagation rate appeared to be faster than the rate in a seawater corrosion environment at the early stages of the experiment. As the crack length and stress intensity factor K increased, the crack propagation rate became slower than the fatigue crack propagation rate in seawater. However, the crack growth rate was faster than that in the atmosphere.

A Study on the Improvement of Crack Propagation in Wing Root Fairing Support by Pre-load in Military Aircraft Production Process (군용항공기 생산공정에서 발생하는 예하중에 의한 주익 루트 페어링 지지대 균열개선 연구)

  • Shin, Jae Hyuk;Jeong, Su-Heon;Kang, Gu-Heon;Lee, Heon Sub
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.38-44
    • /
    • 2018
  • Military aircraft may have fatigue cracks in structurally weak areas due to multiple factors such as the accumulation of flight time while perform various missions and unpredictable air conditions. As a fatigue crack progresses, there is a risk that the structure will be destroyed in extreme cases, which can have a significant impact on flight safety. In this study, a cracking phenomenon was observed during the periodic inspection the inner support of the fairing, which is installed to protect the connection between the wing and the body of the aircraft. Therefore, a study on a series of quality improvement processes for reformation was described. In order to identify the causes of cracks, pre-load generation occurrence during the wing assembly process was investigated and a fracture analysis was performed. Also, the design of the support structure was suggested in terms of preventing recurrence of cracks. The structural integrity was verified using a stress and fatigue life analysis.

The Effect of Fretting Wear on Fatigue Crack Initiation Site of Press-fitted Shaft (압입축에 발생하는 프레팅 마모가 피로균열 발생 위치에 미치는 영향)

  • Lee, Dong-Hyong;Kwon, Seok-Jin;Choi, Jae-Boong;Kim, Young-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.546-553
    • /
    • 2007
  • The objective of the present paper is to evaluate the effect of the evolution of contact surface profile by fretting wear on the contact stress distribution and fatigue crack initiation site of press-fitted shaft by means of an analytical method based on experimental data. A finite element analysis was performed to analyze the stress states of press-fitted shaft, considering the worn contact surface profiles of shaft. The evolutions of contact stress as wearing of contact surface were analyzed by finite element analysis and fatigue crack nucleation sites were evaluated by fretting fatigue damage parameter (FFDP) md multiaxial fatigue criteria. It is found that the stress concentration of a contact edge in press-fitted sha손 decreases rapidly at the initial stage of total fatigue life, and its location shifts from the contact edge to the inside due to fretting wear as increasing of fatigue cycles. Thus the transition of crack nucleation position in press-fitted shaft is mainly caused by stress change of a contact edge due to the evolution of contact surface profile by fretting wear. Therefore, it is suggested that the nucleation of multiple cracks on fretted surface of press fits is strongly related to the evolution of surface profile at the initial stage of total fatigue life.

Thermographic Inspection of Fatigue Crack by Using Contact Thermal Resistance (접촉 열저항 효과를 이용한 피로균열의 적외선검사)

  • Yang, Seungyong;Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.2
    • /
    • pp.187-192
    • /
    • 2013
  • Fatigue crack was detected from a temperature change around surface crack using the thermographic technique. Thermal gradient across the crack decreased very much due to thermal resistance of contact surface in the crack. Heat diffusion flow passing through the discontinuity was visualized in temperature by infrared camera to find and locate the crack. A fatigue crack specimen(SM-45C), which was prepared according to KS specification and notched in its center to initiate fatigue crack from the notch tip, was heated by halogen lamp at the end of one side to generate a heat diffusion flow in lateral direction. A abrupt jump in temperature across the fatigue crack was observed in thermographic image, by which the crack could be located and sized from temperature distribution.

Fatigue Crack Growth Behavior of Powder Metallurgical Nickel-based Superalloy using DCPD Method at Elevated Temperature (DCPD법을 이용한 분말야금 니켈기 초내열합금의 고온 피로균열진전거동)

  • Na, Seonghyeon;Oh, Kwangkeun;Kim, Hongkyu;Kim, Donghoon;Kim, Jaehoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.2
    • /
    • pp.11-17
    • /
    • 2016
  • Powder metallurgy nickel based superalloy has been used in a high temperature part of turbine engine for airplane. The fatigue crack growth behavior was investigated using CT specimens for the materials at room temperature(R.T.), $600^{\circ}C$ and $700^{\circ}C$. The direct current potential drop(DCPD) method suggested by ASTM E647 was used to measure the crack length during fatigue crack growth at various stress ratios. The fatigue crack growth rate at R=0.5 was faster than that at R=0.1 for all temperature conditions and increased with the increase of stress ratio and temperature. Fractography was conducted for analysis of fracture mechanism.

Observation of Fatigue Crack Growth Behavior in 1Cr-1Mo-0.25V Steel Using Image Processing Technology (영상처리기법을 이용한 1Cr-1Mo-0.25V 강의 피로균열 성장거동 관찰)

  • Nahm, Seung-Hoon;Kim, Yong-Il;Ryu, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.1
    • /
    • pp.14-21
    • /
    • 2002
  • The development of a new experimental method is required to easily observe the growth behavior of fatigue cracks. To satisfy the requirement, an image processing technique was introduced to fatigue testing. The length of surface fatigue crack could be successfully measured by the image processing system. At first, the image data of cracks were stored into the computer while the cyclic loading was interrupted. After testing, crack length was determined using an image processing software which was developed by authors. Various image processing techniques like a block matching method was applied tc the detection of surface fatigue cracks. By comparing the data measured by the image processing system with those by the manual measurement with a microscope, the effectiveness of the image processing system was established. If the proposed method is used to monitor and observe the crack growth behavior automatically, the time and efforts for fatigue test could be dramatically reduced.

Prediction of Fatigue Crack Propagation Life under Constant Amplitude and Overloading Condition (일정진폭 및 과대하중 하에서의 피로 균열 성장 수명 예측)

  • 이억섭;김승권
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.113-119
    • /
    • 1998
  • Ship structures and aircraft structures are consisted of thin sheet alloy, so it is very important to understand the characteristics of fatigue crack propagation of that material and to establish the data base. The data for fatigue crack propagation behavior scatter very much even under identical experimental conditions with constant loading. The behavior of fatigue crack propagation under regular and irregular cyclic loadings is known to be highly affected by complicated factors such as plastic zone developed at the vicinity of crack tip and reduction of cross sectional area. In this paper, the controlled stress amplitude and overload fatigue crack propagation tests have been conducted to investigate the effect of varying factors such as plastic zone size near the crack tip and area reduction factor (AF) on the fatigue crack propagation behavior A better simulation of fatigue crack propagation behavior is found to be obtainable by using Wheeler and Willenborg models with AF effect.

  • PDF