• Title/Summary/Keyword: 피로하중

Search Result 1,004, Processing Time 0.026 seconds

Fatigue Life Estimation of Induction-Hardened Drive Shaft Under Twisting Loads (비틀림 하중을 받는 고주파열처리 드라이브 차축의 피로수명 평가)

  • Kim, Tae Young;Kim, Tae An;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.567-573
    • /
    • 2017
  • The drive shaft of passenger vehicle has an important role in transmitting the torque between the power train system and the wheels. Torsional fatigue failures occur generally in the connection parts of the spline edge of the drive shaft, when there is significant fatigue damage under repeated twisting loads. A heat treatment, an induction hardening process, has been adopted to increase the torsional strength as well as the fatigue life of the drive shaft. However, it is still unclear how the extension of the induction hardening process in a used material relates to its shear-strain fatigue life range. In this study, a shear-strain controlled torsional-fatigue test with a specially designed specimen was conducted by an electro-dynamic torsional fatigue test machine. A finite element analysis of the drive shaft was carried out using the results obtained by the fatigue experiment. The estimated fatigue life was verified through a twisting load test of the real drive shaft in a test rig.

Generation of Pseudo-Random Load Waves and Preliminary Study on Surface Fatigue Crack Growth under Random Loading (유사랜덤하중파형 작성과 이를 이용한 랜덤하중하의 표면피로 균열진전에 관한 기초적 검토)

  • 송지호;김종한;김정엽
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.125-134
    • /
    • 1989
  • Pseudo-random load waves for fatigue testing were generated by personal computer simulation and preliminary study was performed on the growth behavior of surface fatigue crack under random ladings. The closure behavior and growth rates of surface fatigue crack were significantly influenced by the characteristics of random waves. It was also found that the growth rates of surface fatigue crack under random loadings could not be always described by the effective stress intensity factor based on the concept of crack closure.

Evaluating a Load Limit on Heavy Vehicles in Flexible Pavements (아스팔트 포장구조체에 대한 중차량 제한하중 평가)

  • Park, Seong-Wan;Hwang, Jung Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1D
    • /
    • pp.53-60
    • /
    • 2010
  • The objective of this paper is to evaluate a performance-based load zoning procedure in flexible pavements. Long-term performance in flexible pavements will be evaluated using VESYS type rutting model and Miner s theory on fatigue cracking. Permanent deformation properties such as alpha and gnu, and fatigue cracking properties such as k1 and k2 in asphalt concrete were used respectively. The data from the literatures were also used in predicting performance in flexible pavements for evaluating load restrictions as well as parametric study. Finally, a performance-based load zoning procedure and a simple load limit procedure for load zoning were assessed.

Fatigue Lives of Pavement Concrete According to Fatigue Test Methods (실험방법에 따른 포장 콘크리트의 피로수명)

  • Yun, Kyong-Ku;Kim, Dong-Ho;Hong, Chang-Woo
    • International Journal of Highway Engineering
    • /
    • v.5 no.3 s.17
    • /
    • pp.11-20
    • /
    • 2003
  • Concrete structures such as bridges, pavement, and offshore structures are normally subjected to repeated load. Because highway and airfield pavements are to resist tension in bending, fatigue failure behavior is very important the fatigue life of materials. Therefore, in this paper was carried according to the fatigue test method and experiment variables for pavement concrete. The fatigue tests were applied split tension($150{\times}75$ in size) and flexural($150mm{\times}150mm{\times}550mm$ in size) beam fatigue test method. Major experimental variable in the fatigue tests in order to consideration of fatigue life were conducted loading frequency of 1, 5, 10, 20Hz and loading shape of block, sine, triangle and moisture condition of dry and wet condition and curing age of 28day and 56day. The test results show that the effect of loading frequency increasing the frequency increased fatigue life, decreased significant at frequencies below 200 cycles. The effect of loading wave form on fatigue life show that a block decreased, triangular increased in comparison with sine. The effect of moisture condition decreased in wet condition in comparison with dry condition. The effect of curing age increased in 564ays in comparison with 28day.

  • PDF

Fatigue Behavior of Prestressed Concrete Beams Using FRP Tendons (FRP 긴장재를 이용한 프리스트레스트 콘크리트 보의 피로 거동)

  • Kim, Kyoung-Nam;Park, Sang-Yeol;Kim, Chang-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Recently, researches about fiber reinforced polymer (FRP) which has excellent durability, corrosion resistance, and tensile strength as a substitution material to steel tendon have been actively pursued. This study is performed to examine FRP tendon used prestressed beam's safety under service load. The specimen was a prestressed concrete beam with internal bonded FRP tendon. In order to compare the member fatigue capacity, a control specimen of a prestressed concrete beam with ordinary steel tendon was tested. A fatigue load was applied at a load range of 60%, 70%, and 80% of the 40% ultimate load, which was obtained though a static test. The fatigue load was applied as a 1~3 Hz sine wave with 4 point loading setup. Fatigue load with maximum 1 million cycles was applied. The specimen applied with a load ranging between 40~60% did not show a fatigue failure until 1 million cycles. However, it was found that horizontal cracks in the direction of tendons were found and bond force between the tendon and concrete was degraded as the load cycles increased. This fatigue study showed that the prestressed concrete beam using FRP tendon was safe under a fatigue load within a service load range. Fatigue strength of the specimen with FRP and steel tendon after 1 million cycles was 69.2% and 59.8% of the prestressed concrete beam's static strength, respectively.

Improvement of Fatigue Model of Concrete Pavement Slabs Using Environmental Loading (환경하중을 이용하는 콘크리트 포장 슬래브 피로모형의 개선)

  • Park, Joo-Young;Lim, Jin-Sun;Kim, Sang-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.103-115
    • /
    • 2011
  • Concrete slab curls and warps due to the uneven distribution of temperature and moisture and as the result, internal stress develops within the slab. Therefore, environmental loads must be considered in addition to the traffic loads to predict the lifespan of the concrete pavement more accurately. The strength of the concrete slab is gradually decreases to a certain level at which fatigue cracking is generated by the repetitive traffic and environmental loadings. In this study, a new fatigue regression model was developed based on the results from previously performed studies. To verify the model, another laboratory flexural fatigue test program which was not used in the model development, was conducted and compared with the predictions of other existing models. Each fatigue model was applied to analysis logic of cumulative fatigue damage of concrete pavement developed in the study. The sensitivity of cumulative fatigue damage calculated by each model was analyzed for the design factors such as slab thickness, joint spacing, complex modulus of subgrade reaction and the load transfer at joints. As the result, the model developed in this study could reflect environmental loading more reasonably by improving other existing models which consider R, minimum/maximum stress ratio.

Microcracking of Motor Case with Fiberite 934/T300 Laminates under fatigue Loads (피로하중을 받는 Fiberite 934/T300 복합재료로 만들어진 연소관의 미세균열 연구)

  • 김형원;김성은
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.82-88
    • /
    • 1997
  • The goal is to assess the effect of fatigue loading on mechanical properties of Fiberite 934/T300 laminates of pressure vessel using the recent variational mechanics analysis. This analysis has been useful in providing fracture mechanics interpretation of matrix microcracking in cross-ply laminates. This paper describes using the new energy release rate analysis for a fracture mechanics based interpretation of microcrack formation during fatigue loading. The master plot by modified Paris-law gives a complete characterization of a material system's resistance to microcrack formation.

  • PDF

A Study on the Characteristics of Fatigue Failure for Fillet Welded Joint (필릿 용접이음부의 피로파괴 특성에 관한 연구)

  • Kang, S.W.;Ha, W.I.;Shin, J.S.;Jang, T.W.;Jae, J.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.4
    • /
    • pp.133-141
    • /
    • 1996
  • The mode of fatigue failure is depended on the characteristics of the fatigue crack initiated and propagated from the weld toe and the weld root in the load-carrying fillet welded joints. The characteristics of fatigue crack are deeply affected by the geometry of fillet and the stress range. The purpose of this study is to investigate critical weld size and stress range in order to occur toe failure under pulsating tension loading in the load-carrying fillet welded cruciform joints.

  • PDF

The Bond Performance of RC Beams Strengrhened for FRP Pannel deal with Fatigue Loadings through Experiments (실험에 의한 피로하중을 받는 FRP패널 보강 RC보의 부착성능)

  • Lee, Chang Gyu;Chung, Yung Bea
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.105-115
    • /
    • 2007
  • Repair and Reinforcement are subjected change to increasing of remodelling. The usage of carbon fiber sheets is increasing for the strengthening of reinforce concrete structures. Therefore experimental and analytical studies are carry out to investigate the flexural behaviors of the strengthened RC structures by the external bonding of the new reinforcement method. Also the aim of this study is to investigate reinforcing method of FRP panel deal with fatigue loading through experiments.

A Study of the Link Strength Design of Converter Suspension System (전로 지지장치 접합부 강도설계에 관한 연구)

  • Lee, Man-Seung;Kim, Hyun-Bae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.322-325
    • /
    • 2010
  • 철강 플랜트 주요 설비인 전로를 지지하는 장치의 접합부 강도설계를 위해 작용하중은 해석적인 방법으로 신뢰성 있게 계산하였고, 정적하중에 의한 응력은 ASME 규정에 따른 허용응력으로 평가하였다. 한편 피로설계 측면에서는 전로와 같은 대형 용접구조물은 강도상 취약부인 용접부에서 다양한 용접비드 형상에 따라 국부응력이 크게 달라지므로 설계단계에서 피로수명 평가에 어려움이 있었다. 따라서 전로 지지장치 접합부 피로설계는 설계단계에서 피로수명을 평가하는 실용적이고 안전측 방법으로 알려진 Hot Spot 응력을 사용하고 공신력을 갖는 설계규정인 ASME와 영국 PD 5500 절차에 의해 평가하였다. 평가결과 두 규정 모두 안전측에서 평가되는 것을 확인할 수 있었고 이 방법은 피로하중이 지배적인 대형구조물의 설계단계에서 유용한 방법으로 활용할 수 있으리라 판단된다.

  • PDF