• Title/Summary/Keyword: 피로파단

Search Result 157, Processing Time 0.023 seconds

Characteristics of Fatigue Behavior and Fracture Surfaces by Rotary Bending Test in SM45C Welding Zone (SM45C용접부에서 회전굽힘시험에 의한 피로 및 파단면의 특성)

  • Lee, Yong-Bok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • SM45C steel rods using generally for machine components were selected and welded by butt-GMA welding method for this study. And then they were studied about characteristics of fatigue behavior and fracture surfaces by rotary bending test. Fatigue strength in weld zone present highly in order of the boundary between deposited metal zone and heat affected zone, deposited metal zone, heat affected zone. The region of infinite life by Haigh diagram present highly in order of the boundary between deposited metal zone and heat affected zone, deposited metal zone, heat affected zone. Fatigue cracks in unnotched specimens of base metal and weld zone introduce simultaneously from extensive out-side of circumferential cross-section and propagate to the other side indicating beach markings and dimples according to consolidation of fatigue cracks. Fatigue cracks in all of notched specimens introduce simultaneously in out-side of circumferential cross-section by high stresses and propagate to center of it indicating beach markings.

A Study on Shear-Fatigue Behavior of New Polymer Reinforced Concrete Beams (신(新)폴리머 철근(鐵筋)콘크리트보의 전단피로(剪斷疲勞) 거동(擧動)에 관(關)한 연구(研究))

  • Kwak, Kae Hwan;Park, Jong Gun;Jang, Ki Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.35-44
    • /
    • 1993
  • The objective of this study is aimed at developing a new class of polymer concrete, in which hydration of cement and curing of a thermosetting resin can take place simultaneously during the mixing of concrete components. For the selected mix-proportion of the new polymer, the physical and mechanical properties needed for designs are presented. These important properties are compressive strength, flexural strength, split tensile strength, direct strength, fatigue characteristics and fracture parameters. The observed properties are always compared with conventional concrete to serve as reference for engineer in deciding or selecting the proper materials for their projects, and shore protecting structure.

  • PDF

Durability Assessment of Polyoxymethylen Using Ultrasonic Fatigue Testing (초음파 피로시험법을 이용한 엔지니어링 플라스틱 (Polyoxymethylen ; POM)의 내구성 평가)

  • Cho, In Sik;Hwang, Jung Ho;Oh, Joo Yeon;Kim, Hyun Chang;Oh, Sae Hoon;Lee, Chang Soon;Park, In Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.8
    • /
    • pp.781-785
    • /
    • 2015
  • In this study, a newly developed ultrasonic fatigue test was performed for durability assessment of polyoxymethylene engineering plastic, which has a high crystallization rate and degree of crystallization. Fatigue strength of POM (polyoxymethylene) was performed on a piezoelectric UFT developed by Mbrosia Co., Ltd(1), operating at a high frequency of 20 kHz. The test results showed a fatigue limit of 5.0~6.0 MPa under fatigue testing at R = -1, 20kHz; and, electron microscopy revealed the size effect by risk volume and fractured dimple structure after the coalescence of micro-voids through the crazing effect, which occurs during the failure of a polymer.

Fatigue Crack Growth Analysis by EFG Method in Steel Components with Multiple Cracks (EFG법을 사용한 다수균열 함유 강부재의 피로균열 성장거동 해석)

  • 이상호;윤영철
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.691-700
    • /
    • 1999
  • 본 연구에서는 요소를 사용하지 않는 새로운 해석방법인 EFG(Element-Free Galerkin)법을 사용하여 복수의 초기균열을 지닌 강재가 반복피로하중을 받는 경우 균열들이 점진적으로 성장하여 부재가 파단에 이르는 과정을 해석적으로 규명하였다. 이를 위하여 본 연구에서는 일반적인 피로균열성장법칙을 EFG법을 이용한 균열해석 알고리즘에 적용하여 복수의 균열들이 각각의 응력상태에 따라 차별적으로 성장해 나가는 과정을 해석할 수 있는 알고리즘을 도입하고 이를 바탕으로 다양한 하중상태하에서 복수의 균열들의 성장경로를 추정함과 동시에 이에 따른 잔존수명을 산정할 수 있는 기법을 제시하였다. 본 연구에서 제안된 해석방법을 피로균열 발생빈도가 큰 몇가지의 강부재 형태에 적용해 본 결과 다수균열 함유 부재의 피로균열 성장거동과 균열들의 피로수명을 성공적으로 예측할 수 있었다.

  • PDF

Mechanical Loads of Dropper for High Speed Electric Railway (고속 전차선로 드로퍼에 대한 기계적 하중에 관한 연구)

  • Lee, Gi-Chun;Lee, Tae-Hoon;Lee, Jong-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.222-227
    • /
    • 2011
  • The dropper supports the contact wire and is attached using various types of dropper clips on the catenary. Droppers are subject to mechanical stress from buckling during the passage of pantographs. In order to investigate failure causes for the high speed line dropper, theoretical analyses and experiments have been carried out. In this paper, mathematical formulas are derived for the pre-sag of the dropper static load. The measured values in the experiment were similar to the theoretical predictions. To analyze the cause on fracture of dropper wire, we have conducted analysis such as SEM(Scanning Electron Microscope) of fractured specimens in the field and new specimens. Finally, we performed measurement for the variation of dynamic load on the dropper when a pantograph moved at 300km/h under the Korean high speed overhead line. If such mechanical load occur repeatedly with every passing pantograph, it is possible that the dropper wire will break due to fatigue. This results will be used for special management of high speed catenary system maintenance and life estimation of dropper.

The Correlation between Fatigue Fracture Crack Surface Friction and Crack Closure Effect in Crack Growth under Mixed-mode loading (혼합모드 하중 하에서의 균열성장 중 피로파단면 마찰과 균열닫힘효과의 상호관계)

  • Seo, Ki-Jeong;Song, Sam-Hong;Lee, Jeong-Moo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.214-219
    • /
    • 2004
  • Crack tip behavior of single mode loading condition(mode I)depend on tensile loading component but one of mixed mode loading condition(mode I+II) have influenced on shear loading component like the practical structure. Because crack closure is caused by shear loading component under mixed-mode loading a research on the behavior in the stage of crack initiation and propagation require to be evaluate about crack closure effect by fatigue crack surface friction. For that reasion we examined the behavior at the crack tip by direct measuring method. Measured behavior at the crack tip was analyzed through vector crack tip displacement. As a result, crack propafation equation was corrected by considering with crack closure effect. In addition we compared fatigue fracture crack surface and crack closure level.

  • PDF

Probabilistic Distribution of Penetration and Break Fatigue Life of Surface Crack (표면크랙의 관통 및 파단 피로수명의 확률분포)

  • 윤한용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2495-2500
    • /
    • 1994
  • A method of prediction for the fatigue life of surface crack, that is, initial cracks grow and penetrate through the thickness, was presented in the previous study of the author. Effects of parameters such as the initial crack length, material factors, etc., for the life were discussed. In this paper, the probabilistic distribution of the life is calculated. Effects of the distribution of parameters for the distribution of life were also discussed.

A study on the change of the fatigue life and the fracture morphology due to the carbon black on the Natural rubber for vibration-proof (철도차량 부쉬용 방진 천연고무의 카본블랙 강화제에 의한 피로수명과 파단 모폴로지 변화 연구)

  • Kim Jae-Hoon;Hur Hyun-Moo
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • The effects of carbon black on the fatigue lift and the fracture morphology and the carbon black dispersion of the carbon-black filled natural rubbers, for the vibration-proof, were investigated. Different kinds of carbon blacks resulted in different fatigue lift and fracture morphologies, which are classified by micro-scale and macro-scale fracture morphologies. These results be related to the size distribution of carbon black particles, the development of the carbon black agglomerate and the combine forces between the carbon black and the natural rubber.

Microstructural Evolution and Magnetic Property of Creep-Fatigued Ferritic 9Cr Heat-Resisting Steel (크리프-피로 손상된 페라이트기 9Cr 내열강의 미세조직 발달과 자기적 특성)

  • Kim, Chung-Seok;Kwun, S.I.;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.5
    • /
    • pp.417-425
    • /
    • 2007
  • The ferritic 9Cr-1Mo-V-Nb heat-resisting steel was experimentally studied in order to characterize its microstructural evolution during creep-fatigue by coercivity measurement. The creep-fatigue test was conducted at $550\;^{\circ}C$ with the tensile holding time of 60s and 600s, respectively. The coercivity decreased until the failure and the hardness monotonously decreased for the whole fatigue life. As the life fraction of creep-fatigue increased, the $M_{23}C_6$ carbide coarsened following the Ostwald ripening mechanism. However, the MX carbonitrides did not grow during creep-fatigue due to so stable at $550\;^{\circ}C$. The width of martensite lath increased because of the dislocation recovery at the lath boundaries. The magnetic coercivity has an influence on the microstructural properties such as dislocation, precipitates and martensite lath boundaries, which interpreted in relation to microstructural changes. Consequently, this study proposes a magnetic coercivity to quantify the level of damage and microstructural change during the creep-fatigue of ferritic 9Cr-1Mo-V-Nb steel.