• Title/Summary/Keyword: 피난조건

Search Result 83, Processing Time 0.024 seconds

Study on Establish of Multi-Hazard Map in Urban Area (도시지역에서의 멀티 해저드 맵 구축을 위한 연구)

  • Kim, Yeon Joong;Yoon, Jung Sung;Tanaka, Kohji
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.17-17
    • /
    • 2015
  • 세계적으로 최근 국지적 호우에 의한 홍수 및 토사재해가 빈번히 발생하여 인적피해 및 자산피해가 급증하고 있다. 일반적으로 강우에 의해 홍수가 발생되며 하안 및 하천 구조물에 피해를 주는 동시에 월파 및 제방이 붕괴되어 하천에서 제내지로 범람하여 범람피해가 발생된다. 하지만 도시지역에서 발생되는 강우는 불투수 면적비율이 비교적 커 다른 지역보다 최대 침수심이 발생되는 시간이 매우 빠르게 도달하는 환경적 특징이 있다. 또한 선상지 지역에 발달된 도시는 어느 동일한 강우사상에 의해 발생되는 내 외수 범람재해 및 토사재해가 동시에 발생되어 피해가 중첩될 가능성이 매우 크며 피해 리스크 또한 증가하고 있는 추세이다. 따라서 이상기후에 의해 발생되는 재해경감을 위해 기존의 대책 및 새롭게 구축되는 해저드 맵에 대해서 이와 같은 여러 재해 발생 가능성을 충분히 고려된 멀티 해저드 맵 구축이 필요하다. 본 연구에서는 일본 오노시의 지역방재계획을 위한 통합적인 해저드 맵 구축을 위해 내 외수 범람에 의한 피해 및 토석류 발생에 의한 영향평가를 실시하여 두 재해가 동시에 발생 가능한 지역을 대상으로 멀티 해저드 맵 구축 및 피난계획 수립을 목적으로 최근 발생되는 국지적 호우에 대한 예측을 위해 아직 검토대상 지역에 발생하진 않았지만 발생 가능한 강우사상을 추출하기 위해 DAD 분석을 실시하여 가능최대강우량을 산정하여 외력조건으로 사용하였다. 뿐만 아니라 토석류 모델의 현장 적용성 평가를 위해 2011년에 발생된 우면산 토석류 재해를 대상으로 비교 검토를 실시하였으며 본 논문의 주요한 결과를 아래와 같이 나타내었다.

  • PDF

A Comparison of the Trainees' Evacuation Characteristics according to the Indoor Smoke-fullfill during the Safety Training on Ship (선상안전교육 시 선내 연기충진 여부에 따른 실습생의 피난이동특성 비교)

  • Hwang, Kwang-Il;Cho, Ik-Soon;Yun, Gwi-Ho;Kim, Byeol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.422-429
    • /
    • 2018
  • To make students recognize the danger of fire smoke that may occur in ships and to improve the response capability, spaces for safety educ ation were built inside the training ship, and scenarios were developed. This study is an analysis of the movement characteristics of the students acquire d under each scenario. Followings are the summary of the analysis results. In the non-smoke environments, there was no difference in the velocity of escape movement between the case of without block on the familiar route and the case of with unexpected block. However, when the indoor was filled with smoke, the visibility became very low because of the smoke density and the average velocity was 62.5 % slower than the case where it was not. Regardless of the scenarios, the average equivalent velocity on the complex path was faster than the simple straight path, and the standard deviation was smaller. Under the smoke-fullfilled environment, although the relative velocity probability distributions of the complex passage and the entire passag e are very similar, the inter-individual fluctuation of the relative velocity ratio of the complex passage to that of the entire passage was very large. On the other hand, equivalent velocity could be expressed by the logarithmic function of the visibility. Also, as the tension of the students increased, the equivalent velocities were accelerated on all scenarios.

Study on Verification of Applicability for a Warehouse Construction Site using a Fire Risk Assessment Tool (화재위험도 평가 Tool에 의한 물류창고 공사장 적용성 검증에 관한 연구)

  • YongGoo Seo;SeHong Min
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.673-688
    • /
    • 2023
  • Purpose: Fires that occur during construction are infrequent, but cause great damage. Recently, with the growth of the logistics and distribution industry, the number of construction sites for new logistics warehouses is increasing, so it was selected as a research subject and research was conducted to reduce accidents at construction sites through the development of a fire risk assessment tool to quantitatively approach fire prevention. Method: A comprehensive fire risk assessment tool was accumulated by classifying the work in progress, classifying combustibles and ignition sources by grade, excluding air (oxygen), which is difficult to control, and additionally substituting evacuation safety. Result: Using the developed and proposed fire risk evaluation tool, excavation work with low fire risk, facility construction with medium fire risk, and finishing work with high fire risk were sampled to derive the result (CGI). Conclusion: In this study, it was possible to establish specific preventive measures and evaluate evacuation safety by controlling physical conditions (combustibles) and energy conditions (ignition sources) according to the risk assessment by developing a tool that can evaluate the risk of 14fire occurrence at construction sites. It is expected that in the future, through the application of the fire risk evaluation tool at construction sites, it will be provided as a criterion for establishing a process plan that can reduce risk and evaluating the adaptability of firefighting equipment.14

Smoke Exhaust Performance Prediction According to Air Supply and Exhaust Conditions for Shipboard Fires from a Human Safety Point of View (인명안전 관점에서 선박 화재 시 급·배기조건에 따른 배연성능 예측평가)

  • Kim, Byeol;Hwang, Kwang-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.782-790
    • /
    • 2016
  • When a fire occurs on a ship that has mechanical ventilation facilities, the air supply and exhaust systems directly effect smoke diffusion. And there is a high possibility that occupant's visibility will be harmed because of smoke. In this study, the effects and risks of air supply and exhaust systems with regard to smoke diffusion given a shipboard fire analyzed with a Fire Dynamic Simulator(FDS). Suggested measures are also provided for using air supply and exhaust systems more efficiently. The results showed that, when air supply and exhaust systems were both working at the time of a fire, rather than stopping these systems as previously encouraged, continuing to operate both was an effective measure to gain evacuation time. When a fire occurred and the exhaust system was operating, also starting the air supply system near the origin of the fire was another effective approach to gain evacuation time. However, when only the air supply system was operating and a fire occurred, the air supply system accelerated smoke diffusion, so it was necessary to stop the air supply system to detect smoke diffusion as much as possible.

A Study on the Excavation of the Center Wall for the Evacuation Passageway in the Operating 2-Arch Tunnel (운행 중인 2-Arch 터널의 피난연결통로 신설을 위한 중앙벽체 굴착에 관한 연구)

  • Lee, Jong-Hyun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.454-464
    • /
    • 2021
  • Purpose: There is a need to construct an evacuation passageway for the 2-Arch tunnel, which has been constructed and is in operation. Therefore, it aims to analyze tunnel and center wall behaviour and stability due to excavation of the center wall. Method: We describe the theoretical background of 2-Arch tunnel and evacuation passageway, and focused on analyzing the behaviour of tunnel and wall using 3-dimensional finite element analysis. Parametric analysis according to rock rating was performed with various ground conditions, and the displacement and stress of the center wall were intensively analyzed. Result: With the center wall excavation, the largest amount of settlement was shown in the center of the opening, and the stress was greatest during the first excavation. In addition, it was shown that stress concentration occurred at the top of both openings, and stability reviews considering the concept of allowable stress showed that it exceeded the allowable stress. Conclusion: Although the displacement of the tunnel has secured stability within the allowable standard, the generated stress is found to exceed the allowable standard, so it is necessary to prevent sudden stress release by applying appropriate reinforcement methods during construction.

Study on Heat and Smoke Behavior Due to the Natural Wind and the Forced Smoke Ventilation for the Fire in an Underground Subway Station (지하역사에서 화재발생시 자연풍 및 강제배연의 유무에 따른 열 및 연기거동 특성 연구)

  • Chang Hee-Chul;Kim Tae-Kuk;Park Won-Hee;Kim Dong-Hyeon
    • Fire Science and Engineering
    • /
    • v.19 no.1 s.57
    • /
    • pp.80-86
    • /
    • 2005
  • In this study effects of the natural wind and the forced smoke ejection by operating the exhaust fan are studied numerically to examine the flow characteristics of the smoke and heat generated from a fire on the platform of an underground subway station. Three different situations, including 1) the case with no natural wind and no exhaust fan operation, 2) the case with natural wind but no exhaust fan operation and 3) the case with no natural wind but exhaust fan operation, are considered for the numerical analyses. The numerical results show that the natural wind causes a rapid spread of the fire along the tunnel resulting in rapid spread of the smoke and heat over the platform which affects the escape. The operation of the exhaust fan also results in the rapid spread of smoke and heat over the platform, but the time required for reaching the safe escaping height of the smoke layer with the exhaust fan operation is much longer than that without the exhaust fan operation. The numerical results also show that the required capacity of the exhaust fan becomes larger when the effect of the natural wind is included.

A Prototype for Real-time Indoor Evacuation Simulation System using Indoor IR Sensor Information (적외선 센서정보기반 실시간 실내 대피시뮬레이션 시스템 프로토타입)

  • Nam, Hyun-Woo;Kwak, Su-Yeong;Jun, Chul-Min
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2012
  • Indoor fire simulators have been used to analyse building safety in the events of emergency evacuation. These applications are primarily focused on simulating evacuation behaviors for the purpose of checking building structural problems in normal time rather than in real time situations. Therefore, they have limitations in handling real-time evacuation events with the following reasons. First, the existing models mostly experiment the artificial situations using randomly generated evacuees while real world requires actual data. Second, they take too long time in operation to generate real time data. Third, they do not produce optimal results to be used in rescueing or evacuation guidance. In order to solve these limitations, we suggest a method to build an evacuation simulation system that can be used in real-world emergency situations. The system performs numerous simulations in advance according to varying distributions of occupants. Then the resulting data are stored in DBMS. The actual person data captured in infrared sensor network are compared with the simulation data in DBMS and the querried data most closely is provided to the user. The developed system is tested using a campus building and the suggested processes are illustrated.

A Study on the Effectiveness to the Life Safety by Enlarging Smoke Vent Size and/or Sprinklered System (배연창 크기와 스프링클러 작동이 인명안전에 미치는 영향 연구)

  • Kim, Hak-Joong;Park, Yong-Hwan;Lim, Choe-Hyun;Kim, Bum-Kyu
    • Fire Science and Engineering
    • /
    • v.24 no.2
    • /
    • pp.133-138
    • /
    • 2010
  • Recently, evacuation safety of a resident of building become the major concern, because building has been higher and more complicated. Buildings in Korea should install the natural smoke venting or mechanical smoke exhaust equipment according to the building law. The smoke control is the most important to guarantee the evacuation safety. This study evaluate the influence to the height and temperature of smoke layer by enlarging smoke vent size and operating sprinkler system using CFAST (Version 6). Smoke venting size is larger, the effect to height and temperature of smoke layer is increased in below 5 MW fire. But, the correlation of these is decreased in above 10 MW fire. The case that opened smoke vent and sprinklered are applied, life safety criteria are satisfied regardless of fire size. After design the fire scenario according to the service and size of building. Install the smoke vent suitable for the fire size and verify that by experiment or simulation.

Analysis on the Results of Measured Concentration of the Combustion Gases Considering Respiration Characteristics in Gasoline Pool Fire (가솔린 풀 화재에서 인체 호흡량 변화를 고려한 연소가스 농도 측정 결과 분석)

  • Choi, Seung Il;Kang, Jung Ki;You, Woo Jun
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.83-88
    • /
    • 2019
  • This study examined the concentration of combustion gases while considering low ventilation and respiration frequency. A one-quarter-size ISO 9705 room corner test was performed. The concentrations of carbon monoxide and oxygen were measured in each case with the continuous inhalation of combustion gas with low ventilation (2, 6, and 10 LPM) and different respiration frequencies (2 s, 5 s, and infinity). The combustion of a gasoline pool fire in the compartment had a theoretical heat release rate of 5.34 kW. The results show that the deviation of the gas concentrations becomes higher as the low ventilation increases compared to the respiration frequency. In addition, as the respiration frequency increases, the variation in the minimum oxygen concentration is larger than the average value, while in the case of carbon monoxide, the variation in the average value is larger than the maximum value. These results show that the inhalation characteristics of refugees should be considered to investigate fires.

Primary Fire Behavior of Compounded Multiplex Theater with Various Fire Conditions (조합형 복합상영관에서의 화재조건에 따른 초기화재 거동해석)

  • Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.1-6
    • /
    • 2007
  • This paper investigated the fire and smoke behavior in the compounded multiplex theater using FDS with various spacial and boundary conditions to ensure the fire safety of the multiplex. The results showed that more rapid temperature increase and smoke can be induced near the exit door for the lower fire load duo to the horizontal smoke movement. The overuse of fire resistants can generate more smoke while delaying combustion rate, which can give adverse effect to the evacuation. The mal-function of the exhaust fan would obstruct smoke exhaust but also retard the function of sprinkler head.