• Title/Summary/Keyword: 플로우 레이트

Search Result 3, Processing Time 0.041 seconds

Hardware Synthesis From Coarse-Grained Dataflow Specification For Fast HW/SW Cosynthesis (빠른 하드웨어/소프트웨어 통합합성을 위한 데이타플로우 명세로부터의 하드웨어 합성)

  • Jung, Hyun-Uk;Ha, Soon-Hoi
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.5
    • /
    • pp.232-242
    • /
    • 2005
  • This paper concerns automatic hardware synthesis from data flow graph (DFG) specification for fast HW/SW cosynthesis. A node in BFG represents a coarse grain block such as FIR and DCT and a port in a block may consume multiple data samples per invocation, which distinguishes our approach from behavioral synthesis and complicates the problem. In the presented design methodology, a dataflow graph with specified algorithm can be mapped to various hardware structures according to the resource allocation and schedule information. This simplifies the management of the area/performance tradeoff in hardware design and widens the design space of hardware implementation of a dataflow graph compared with the previous approaches. Through experiments with some examples, the usefulness of the proposed technique is demonstrated.

A Study on the Workflow of Cinematography with 4K High Speed Camera (4K 초고속 카메라 촬영기술의 워크플로우에 관한 연구)

  • Kim, Sang-Il;Park, Sung-Chul;Kim, Jung-Ho;Kwon, Soon-Chul;Lee, Seung-Hyun
    • Journal of Digital Contents Society
    • /
    • v.15 no.3
    • /
    • pp.425-432
    • /
    • 2014
  • 4K high speed camera shooting enables shooting of fast subjects in Full HD 4 times resolution without motion blur due to increase in resolution and shutter speed. However, this shooting incurs several limitations including focus, intensity of radiation and increase in data quantity. As lack of intensity of radiation may occur due to increased shutter speed, it is shoot by opening aperture and limitation in focusing follows. In addition, there is limitation in shooting records since it has restriction in storage due to increased resolution and frame rate. In this regard, this study aims to analyze the limitations shown above through production case of 4K high speed camera (Phantom Flex 4K) and to design effective workflow to overcome this.

Evaluation of Roadmap Image Quality by Parameter Change in Angiography (혈관조영검사에서 매개변수 변화에 따른 Roadmap 영상의 화질평가)

  • Kong, Chang gi;Song, Jong Nam;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • The purpose of this study is to identify factors affecting picture quality in Roadmap images, which were studied by varying the dilution rate, collimation field and flow rate of contrast medium. For a quantitative evaluation of the quality of the picture, a 3mm vessel model Water Phantom was self-produced using acrylic, a roadmap image was acquired with a self-produced vascular model Water Phantom, and the SNR(Signal to Noise Ratio) and CNR (Contrast to Noise Ratio) were analyzed. CM:N/S In the study on the change of dilution rate, CM:N/S dilution rate changed to (100%~10%:100%), and the measurement of the roadmap image taken using the vascular model Water Phantom showed that the measurement value of SNR gradually decreased as the N/S dilution rate was increased, and the measurement of CNR was gradually reduced. It was confirmed that the higher the dilution rate of CM:N/S, the lower the SNR and CNR, and also significant image can be obtained at the dilution rate of CM:N/S (100%~70:30%). The study showed the value of SNR and CNR in Roadmap image was increased as the Collimation Field was narrowed to the center of the vascular phantom; the Collimation Field was narrowed to the center of the vessel model by 2cm intervals to 0cm through 12cm. To verify the relationship with Roadmap image and Flow Rate, volume of the autoinjector was kept constant at 15 and the flow rate was gradually increased 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The value of SNR and CNR of images taken by using water Phantom gradually decreased as the Flow Rate increased, but at Flow Rate 9 and 10, the SNR and CNR value was increase. It was not possible to confirm the relationship with SNR and CNR by ROI mean value and Background mean value. It is considered that further study is needed to evaluate the correlation about Roadmap image and Flow Rate. In conclusion, as the dilution rate of N/S in contrast medium was increased, the value of SNR and CNR was decreased. The narrower the Collimation Field, the higher image quality by increasing value of SNR and CNR. However, it is not confirmed the relationship Roadmap image and Flow Rate. It is considered that appropriate contrast medium concentration to minimize the effects of kidney and proper Collimation Field to improve contrast of image and reduce exposure X-ray during procedure is needed.