• Title/Summary/Keyword: 플랫 플레이트 구조

Search Result 65, Processing Time 0.027 seconds

Bending Behaviour of Composite Slab Using a New-Shaped Steel Deck Plate and Expanded Metal (신형 데크플레이트와 철판망을 적용한 합성슬래브의 휨 거동)

  • Kim, Myoung Mo;Eom, Chul Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.403-412
    • /
    • 2003
  • The composite metal deck plate system has been widely used for office structures. Recently, however, the flat deck plate has been developed to apply the composite slab system to residential structures. Reduction in construction cost and time can be expected by using expanded metal instead of wire mesh as crack control reinforcements. This study proposed a composite slab system composed of a new-shaped steel deck plate and expanded metal. Twelve specimens were tested to evaluate the structural performance of the new composite slab system. The test results were summarized mainly in terms of maximum load carrying capacity and failure behaviors of each specimen.

Effective Beam Width for Flat-Plate Systems Having Edge Beams under Lateral Loads (수평하중을 받는 테두리보가 있는 플랫플레이트 시스템의 유효보폭계수)

  • Han, Sang-Whan;Cho, Ja-Ock;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.213-219
    • /
    • 2008
  • The purpose of this study is to propose frame analysis method for flat plate slabs having edge beam under lateral loads. Flat plate system is defined as the system only with slab of uniform thickness and column. However, the slab system generally incorporate edge beams at exterior connection in actual design. ACI 318 (2005) allows three methods for conducting flat plate system analysis subjected to lateral loads. There are the finite element method (FEM), the equivalent frame method (EFM), and the effective beam width method (EBWM). Among methods, the EBWM enables us to analyze practically by substituting the actual slab to beam element. In this model, the beam element has a thickness equal to that of the slab, and effective beam width equal to some fraction of the slab transverse width. However, the established EBWM was generally proposed for variables of geometry or stiffness reduction factor and seldom proposed for the effect of edge beams. This study verifies that, in the case of flat plate system having edge beams at exterior connections, the lateral stiffness is considerably larger than without edge beams. Therefore it need to analysis method for considered the effect of edge beams. In this study, an analysis model is proposed for the flat plate system having edge beams under lateral loads by considering the effect of edge beams. To verify the accuracy of proposed model, this study compared results of the proposed EBWM with results of FEM of flat plate systems having edge beams under lateral loads. Also, the proposed approach is compared with experimental results of former research.

Analytical Model to Predict Punching Shear Strength of Flat Plate Structures (플랫 플레이트의 뚫림전단 성능에 관한 해석적 연구)

  • Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.211-214
    • /
    • 2010
  • 플랫 플레이트 시스템은 기둥 주위의 국부적인 응력집중 현상으로 인한 뚫림전단 파괴에 대해 취약하다. 따라서 유한요소해석을 통해 이러한 플랫 플레이트 시스템의 뚫림전단 성능을 평가하고자 한다. 슬래브의 전단을 고려하기 위하여 Reissner-Mindlin 가정을 바탕으로 한 등매개변수 감절점 쉘 요소를 적용하였다. 콘크리트의 재료적 비선형 거동을 고려하기 위해 압축거동은 수정압축장 이론을 적용하였으며 인장강성효과 또한 콘크리트 재료모델에 반영하였다. 기존 실험결과와의 비교를 통해 타당성을 검증하고자 하였다. 비교 결과, 약 16%의 오차율을 보였으며 보강비가 낮은 실험체에 비해 보강비가 높은 실험체가 실험결과에 가까운 값을 예측하는 것으로 나타났다.

  • PDF

The Effect of Anchorage with Shear Reinforcement in Flat Plate System (플랫 플레이트 구조에서 전단보강체의 정착성능에 따른 전단보강효과)

  • Choi, Chang-Sik;Bae, Baek-Il;Choi, Yun-Cheul;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.6
    • /
    • pp.667-675
    • /
    • 2012
  • Flat plate are being used more in buildings requiring a high level of technical installations or in buildings needing changeable room arrangements during their life time such as office buildings. The main problem in flat plate is its weak resistance against a punching failure at its slab-column connections. Therefore, in this research, an experimental study on full-scale interior slab-column connection was performed. Three types of shear reinforcements were tested to prevent brittle punching shear failure that could lead to collapse of the structure. A series of four flat plate specimens including a specimen without shear reinforcement and three specimens with shear reinforcements were tested. The slabs were tested up to failure using monotonic vertical shear loading. The presences of the shear reinforcements substantially increased punching shear capacity and ductility of the interior slabcolumn connections. The test results showed that a slab that did not have enough bond length failed before shear reinforcement yielded due to anchorage slip. Also, FEM analyses were performed to study an effect of slab thickness and concrete compressive strength on the flat plate slab. The analytical study results were used to propose a method to calculate performance capacity of shear reinforcement in slab-column connection.

Evaluation of Shear Strength for Reinforced Flat Plates Embedded with GFRP Plates (매립형 GFRP 판으로 보강된 플랫 플레이트의 전단강도 평가)

  • Hwang, Seung Yeon;Kim, Min Sook;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.121-128
    • /
    • 2014
  • In this study, The purpose of this study is to experimentally investigate the shear behavior of reinforced flat plate embedded with GFRP(glass fiber reinforced polymer) plate with openings. The GFRP shear reinforcement is manufactured into a plate shape with several openings to ensure perfect integration with concrete. The test was performed on 7 specimens. the parameters include the type of reinforcement and amount of the shear reinforcement., From the test, we analysed the crack, failure mode, Strain, load-displacement graph. a calculation of the shear strength of reinforced flat plate with GFRP plate based on the ACI 318-11 was compared with the test results. The results of the experiment indicate that GFRP plate is successfully applied as a shear reinforcement in the flat plate under punching shear.

Stiffness Reduction Factor for Post-Tensioned Flat Plate Slabs under Lateral Loads (횡하중하의 포스트 텐션 플랫 플레이트 해석을 위한 강성감소계수)

  • Park, Young-Mi;Park, Jin-Ah;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.661-668
    • /
    • 2009
  • Effective beam width model(EBWM) has been used for analysis of post-tensioned(PT) flat plate slab frames under lateral loads. The accuracy of this model in predicting lateral drifts and unbalanced moments strongly depends on the estimated effective stiffness of PT flat plate slabs. As moments on the slab due to lateral loads increases, cracks occur which leads to stiffness reduction in slabs. For analyzing PT flat plate slab structure under lateral loads with good precision, reduction in slab stiffness has to be accurately estimated for EBWM. For this purpose, this study collected test results of PT flat plate system conducted by former researches. And this study reduced the width of slab so that the stiffness of the EBWM converged into the lateral stiffness of each test specimens by trial and error. By conducting nonlinear regression analysis using the stiffness ratio of the reduced width of slab to the effective width of EBWM with respect to the level of slab moments, an equation for calculating stiffness reduction factor for slab is proposed. For verifying the accuracy of the proposed equation, this study compared with the test result of the PT flat plate frame. It is shown that the EBWM with the proposed equation predicts the actual stiffness of the PT specimen which varied according to the level of applied moment.

Seismic Performance of Post Tensioned Flat Plate Frames according to Slab Bottom Reinforcement (하부철근 유무에 따른 PT 플랫 플레이트 골조의 내진성능)

  • Park, Young-Mi;HwangBo, Jin;Ryu, Jong-Hyuk;Han, Sang-Whan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.233-236
    • /
    • 2008
  • This study evaluates the seismic performance of post-tensioned(PT) flat plate frames with or without slab bottom reinforcement. For this purpose, 3 and 9 story PT flat plate frames designed only considering gravity loads. This study conducts a nonlinear static pushover analysis. This study use an analytical model which is able to represent punching shear failure and fracture mechanism. The analytical results showed that seismic performance of PT flat plate frame is strongly influenced by the existence of slab bottom reinforcement through column. By placing slab bottom reinforcement in PT flat plate frame, lateral strength and deformation capacity are significantly increased.

  • PDF

Minimum Thickness Requirements of Flat Plate Affected by Construction Load (시공 하중의 영향을 받는 플랫 플레이트의 최소 두께)

  • Kang, Sung-Hoon;Choi, Kyoung-Kyu;Park, Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.650-661
    • /
    • 2003
  • During construction of reinforced concrete building, construction load two times as much as the self weight of a slab, is imposed on the slab, and strength and stiffness of the early-age concrete are not fully developed. As the result, the construction load frequently causes excessive deflection and cracking in the flat plate. The minimum thickness of flat plate specified by the current design codes does not properly address such effect of the construction load. In the present study, a simplified method was developed to calculate the deflection of flat plate affected by the construction load. The proposed method can consider the effects of a variety of design parameters such as the aspect ratio of plate, boundary condition, concrete strength, and construction load. A design equation for the minimum thickness was developed based on the proposed method.

Numerical Study on Interior Flat Plate-Column Connections Subjected to Unbalanced Moment (불균등 휨모멘트를 받는 플랫 플레이트-기둥 접합부에 대한 해석연구)

  • 최경규;황영현;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.949-960
    • /
    • 2002
  • Flat plate structures under lateral load are susceptible to punching shear failure of the slab-column connection. To prevent such brittle failure, strength and ductility of the connection should be ensured. However, due to complexity in the behavior and difficulty in simulating the actual load and boundary conditions of the flat plate system, it is not easy to obtain reliable data regarding to the strength and ductility from the previous experimental studies. In the present study, a numerical study was performed for interior connections of continuous flat plate. For the purpose, a computer program for nonlinear FE analyses was developed, and the validity was verified by comparisons with the existing experimental results. Through the parametric studies, the variations of bending moment, shear, and torsional moment around the connection were investigated. Based on the findings of the numerical studies, the aspects which need to be improved in current design methods were discussed. The results of the present study will be used for developing a design method for the flat plate-column connection in the companion paper.

Seismic Performance of Post Tensioned Flat Plate Structures according to Slab Bottom Reinforcement (하부 철근 유무에 따른 포스트 텐션 플랫 플레이트 골조의 내진성능 평가)

  • Han, Sang-Whan;HwangBo, Jin;Ryu, Jong-Hyuk;Park, Young-Mi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.11-17
    • /
    • 2008
  • This study evaluates the seismic performance of post-tensioned flat plate structures with or without slab bottom reinforcement. For this purpose, 3 and 9 story frames were designed only considering gravity loads. This study conducts a nonlinear static pushover analysis. This study was an analytical model that is able to represent punching shear failure and fracture mechanism. The analytical results showed that the seismic performance of a post-tension flat plate is strongly influenced by the existence of slab bottom reinforcement through column. By placing slab bottom reinforcement in a PT flat plate frame, lateral strength and max drift capacity are significantly increased.