• Title/Summary/Keyword: 플라스틱 재생원료

Search Result 17, Processing Time 0.024 seconds

Packaging & Laws - 자원의 절약과 재활용촉진에 관한 법률

  • (사)한국포장협회
    • The monthly packaging world
    • /
    • s.373
    • /
    • pp.102-113
    • /
    • 2024
  • 환경부는 포장폐기물과 플라스틱 폐기물을 줄이기 위해 포장재의 재질과 구조 등에 관한 기준과 재활용 용이성 평가 기준에 색상 및 무게 기준 항목을 추가하는 내용의 「자원의 절약과 재활용촉진에 관한 법률」과 재생원료의 사용을 촉진하기 위한 재생원료에 관한 사항을 신설한 「자원의 절약과 재활용 촉진에 관한 법률 시행규칙」 등을 일부개정, 시행에 들어갔다.

  • PDF

포장과 법률 - 자원의 절약과 재활용촉진에 관한 법률 일부개정법률

  • (사)한국포장협회
    • The monthly packaging world
    • /
    • s.361
    • /
    • pp.106-109
    • /
    • 2023
  • 포장폐기물과 플라스틱 폐기물의 발생을 줄이기 위하여 포장재의 재질·구조 등에 관한 기준 및 재활용 용이성 평가 기준에 색상 및 무게 기준 항목을 추가하고, 1회용품의 사용 억제 및 무상제공금지 의무가 적용되는 대상 업종으로 객실이 50실 이상인 숙박업을 추가하며, 전자상거래 또는 무인정보단말기를 통하여 음식물을 제공·판매·배달하는 경우에는 고객이 1회용품 사용 여부를 선택할 수 있도록 의무화하는 한편, 재생원료의 사용을 촉진하기 위하여 재생원료를 일정 비율 이상으로 사용한 제품·용기의 제조자 등이 그 사용비율을 표시할 수 있도록 하고, 지방자치단체의 장은 재생원료 사용 제품·용기의 구매를 우선 검토하도록 노력하여야 하며, 재활용부과금의 납부와 관련하여 징수유예 및 분할납부, 납부기한 전 징수, 납부의무의 승계 등에 대한 근거를 신설하는 등 현행 제도의 운영상 나타난 일부 미비점을 개선·보완한다.

  • PDF

Feedstock Recycling Technologies using Waste Vinyls (폐비닐을 이용(利用)한 재생원료화(再生原料化) 기술(技術))

  • Chung, Soo-Hyun;Na, Jeong-Gul;Kim, Sang-Guk;Woo, Hee-Myung;Kim, Young-Tae
    • Resources Recycling
    • /
    • v.22 no.4
    • /
    • pp.46-54
    • /
    • 2013
  • The produced quantity of waste plastics including waste vinyls was assumed as about 5 million tons per year. The quantity of waste vinyls produced from the waste recycling center among total quantity of waste plastics was estimated as about 1 million tons per year. Most of waste vinyls produced from the waste recycling center were recycled as refuse plastic fuel(RPF) or recycled feedstock material. In this study, the medium material using waste vinyls was made by the melting process of heat medium heating and the tensile strength was analyzed for checking the usable possibility of recycled waste vinyl material by comparing with the existent product. In order to use the medium material for producing the recycled product, it can be considered that the tensile strength of medium material is more than 100 $kgf/cm^2$.

Current Status of Collection and Recycling of Used Plastics (폐플라스틱의 수거 및 재활용 현황)

  • 나근배
    • Resources Recycling
    • /
    • v.6 no.2
    • /
    • pp.47-59
    • /
    • 1997
  • Thc paper points oul ever increasing amounts of plastics used in dex, clopmg countries and the prohlelns associated with such increase. Tl~e current status of the production and usc of plaslic materials is reviewed. Also reviewed lncludc thc pahcicies and gu~dclmcs canccrning the treatment of used plastics which have already bccn mstitutcd.

  • PDF

Trends of Environment-friendly Bioplastics (친환경 바이오 플라스틱의 동향)

  • Lee, Jaechoon;Pai, Chaulmin
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.245-251
    • /
    • 2016
  • Trends of bioplastics, especially biomass-based bioplastics which is one of the most promising ways to solve the depletion of fossil fuels and global warming problems, were investigated. Emerged bioplastic polymers such as polylacticacid (PLA), polyglycolicacid (PGA) for cosmetic additive, polyhydroxyalkanoate (PHA) produced by bacterial fermentation, and cost effective starch-based polymer were discussed with their general studies. Also recent technologies of environment-friendly bioplastics for packaging and construction materials as well as disposable hygienic goods were briefly reviewed.

3D Printer Technology for Eco-Friendly Upcycling using Waste Plastic (폐 플라스틱의 친환경 업사이클링을 위한 3D프린터 기술개발)

  • Lee, IL-hyung;Chung, Ho-seok;Cho, Seong-jin
    • Proceedings of the Korea Technology Innovation Society Conference
    • /
    • 2017.11a
    • /
    • pp.369-386
    • /
    • 2017
  • 현재 3D프린터의 원료는 대부분 필라멘트를 사용하고 있는데 가격이 고가인 점과 제작 시간의 문제점으로 3D프린팅 하는데 많은 제약이 따르고 있다. 또한, 원료를 재생 및 재활용하는 3D프린터는 현재까지는 없다. 특히 대형 출력물은 많은 원료가 투입되어야 하기 때문에 제조단가가 상승하고, 그에 따른 3D프린터의 보급과 서비스 확장에도 한계가 있다. 본 연구에서는 현재 재활용되고 있는 플라스틱 소재를 재활용할 수 있는 3D프린터 시스템의 기술개발과 응용서비스를 분석하였다.

  • PDF

Microbial Catalysts for the Production of Thermo-resistant Bioplastics (내열성 바이오플라스틱 생산을 위한 미생물 촉매 개발)

  • Oh, Young Hoon;Lee, Seung Hwan;Park, Si Jae
    • Prospectives of Industrial Chemistry
    • /
    • v.17 no.3
    • /
    • pp.27-37
    • /
    • 2014
  • 온실가스축적으로 인한 지구온난화를 비롯한 기후변화 및 고갈되어가는 석유를 비롯한 화석원료에 대한 문제를 해결하기 위해 재생가능한 자원으로부터 바이오기반 케미칼 및 고분자 등의 화학제품을 생산하는 바이오화학 공정이 많은 관심을 받고 있다. 본 기고문에서는 바이오화학공정에 핵심적인 촉매로 사용되고 있는 재조합 미생물 및 효소의 최근 개발동향을 내열성 엔지니어링 플라스틱인 바이오나일론의 생산을 위하여 개발되고 있는 바이오촉매를 중심으로 살펴보고자 한다.

A Study on the Environment Assessment of Waste Polyethylene Terephthalate (PET) by LCA (LCA기법을 이용한 PET의 환경성평가에 관한 연구)

  • Park, Chan-Hyuk;Chung, Jae-Chun;Choi, Suk-Soon;Kim, Sung-Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.115-123
    • /
    • 2005
  • In this study, life cycle assessment(LCA) technique was employed to evaluate the environmental impact of material recycling of polyethylene terephthalate(PET) bottle. Life cycle inventory was established based on the data collected from recycling companies in Korea. Simapro 5.0 LCA software and Eco-indicator 95 index were used for the analysis. The biggest impact by the material recycling of PET bottle on the environmental category was the global warming. It is because melting and production of the recycled PET product consume a significant amount of electricity and energy. In the environmental pollution discharge, $CO_2$ emission was the highest, followed by NOx. This is probably due to the use of diesel and gasoline in the consumption of electricity and transportation. All the environmental impact showed (-) value except the ozone layer depletion, which means that the material recycling of PET bottle is environmentally fair. The use of recycled PET product greatly reduced the environmental impact.

  • PDF

The Current Status of Recycling Process and Problems of Recycling according to the Packaging Waste of Korea (국내 포장 폐기물에 따른 재질별 재활용 공정 현황 및 재활용 문제점)

  • Ko, Euisuk;Shim, Woncheol;Lee, Hakrae;Kang, Wookgeon;Shin, Jihyeon;Kwon, Ohcheol;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.2
    • /
    • pp.65-71
    • /
    • 2018
  • Paper packs, glass bottles, metal cans, and plastic materials are classified according to packaging material recycling groups that are Extended Producer Responsibility (EPR). In the case of waste paper pack, the compressed cartons are dissociated to separate polyethylene films and other foreign substance, and then these are washed, pulverized and dried to produce toilet paper. Glass bottle for recycling is provided to the bottle manufacturers after the process of collecting the waste glass bottle, removing the foreign substance, sorting by color, crushing, raw materializing process. Waste glass recycling technology of Korea is largely manual, except for removal of metal components and low specific gravity materials. Metal can is classified into iron and aluminum cans through an automatic sorting machine, compressed, and reproduced as iron and aluminum through a blast furnace. In the case of composite plastic material, the selected compressed product is crushed and then recycled through melt molding and refined products are produced through solid fuel manufacturing steps through emulsification and compression molding through pyrolysis. In the recycling process of paper packs, glass bottles, metal cans, and plastic materials, the influx of recycled materials and other substances interferes with the recycling process and increases the recycling cost and time. Therefore, the government needs to improve the legal system which is necessary to use materials and structure that are easy to recycle from the design stage of products or packaging materials.

Characteristics of Materials Recycling Product Using CPW from Households According to the Amount of r-LDPE (r-LDPE 혼입율에 따른 생활계 복합 폐플라스틱 물질재활용 제품 특성)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Kim, Sang-Jin;Shin, Sung-Chul;Lee, Min-Hi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.425-432
    • /
    • 2021
  • In this paper, We produced supporting for ginseng cultivation facilities as a material recycling product of CPW(Complex Plastic Wastes, CPW) from households. And we analyzed the characteristics of material recycling products according to the amount of r-LDPE(Recycled low density polyethylene, r-LDPE) used. As a result, as the amount of recycled LDPE used increa sed, the tensile strength a nd elonga tion of ma teria l recycled products using CPW increa sed, but a sh decrea sed. When the recycled r-LDPE usage is 5% or more, the physical properties of the material recycling product using CPW stably satisfy the quality standard (GRM 3093-2021) of supporting for ginseng cultivation facilities.