• Title/Summary/Keyword: 플라스틱 스퍼 기어

Search Result 2, Processing Time 0.015 seconds

On a Method for the Durability Enhancement of Plastic Spur Gear Using Finite Element Analysis (유한요소해석에 의한 플라스틱 스퍼기어의 내구성 향상방안 연구)

  • Kim, Choong-Hyun;Ahn, Hyo-Sok;Chong, Tae-Hyong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.223-230
    • /
    • 2003
  • Stress patterns are created in the plastic spur gear tooth body by introducing a hole or a steel pin to improve stress distribution. Static analysis using finite element method is carried out to show the effect. The result shows that maximum stress as well as tooth tip displacement is dependent on the size and location of a hole or a steel pin. When a hole located on the tooth center line, the maximum static stress level and the tooth tip deflection is always higher than that of a solid gear. But, a considerable reduction in the maximum stress and tooth tip displacement is achieved by insertion of steel pin.

Experimental Study for the Durability Enhancement of Plastic Spur Gear (플라스틱스퍼기어의 내구성향상에 관한 실험연구)

  • Kim, Chung-Hyeon;An, Hyo-Seok;Jeong, Tae-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1914-1922
    • /
    • 2002
  • Operating test of power-transmission plastic spur gears were performed inspecting both characteristics of friction-wear and endurance, and suggesting endurance improvement method that either drills internal holes of tooth or inserts metallic pin in the internal hole of tooth and verifying this newly-provided method. In case of acetal gears, amount of friction-wear is observed to increase by development of plastic deformation and increase of tooth stiffness due to brittle material property of acetal. To the contrary, in case of nylon gears, suggested method is shown to drop down the tooth temperature for about 3∼10$^{\circ}C$ than original gear, thus amount of wear is reduced by over 30% and operating lift prolonged by more than 200%. Hence, suggested method is proved to be practically applicable to the plastic gears made by soft polymers such as Nylon.