• Title/Summary/Keyword: 플라스틱다이오드

Search Result 22, Processing Time 0.033 seconds

News& Technology

  • Korea Association for Photonics Industry Development
    • Photonics industry news
    • /
    • s.3
    • /
    • pp.60-63
    • /
    • 2001
  • PDF

Reducing the Effects of Wireless Optical Noise Using the Loss Characteristics of Plastic Fibers (플라스틱 광섬유의 손실 특성을 이용한 무선잡음광의 영향 감소)

  • Lee Seong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.7 s.98
    • /
    • pp.746-752
    • /
    • 2005
  • In this paper, optical noise effect is reduced by using the loss characteristics of plastic fibers in an optical wireless system. The attenuation coefficient of a plastic fiber for the signal is different from that f3r the noise light, and the length difference between two fibers to the 2PD's behaves like a discriminative element. It is possible to eliminate the optical noise effect and detect only the signal without optical filters. The signal to noise ratio in a differential detector using fibers was 9.7 dB higher than in a single photodiode without optical fiber.

Fabrication of symmetrical thin film diodes using flexible electrodes (연성 전극을 이용한 대칭형 박막 다이오드 제작)

  • Lee, Chan-Jae;Hong, Sung-Jei;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04b
    • /
    • pp.128-131
    • /
    • 2002
  • 연성 AI 전극을 이용하여 플라스틱 기판 위에 대칭성 박막 다이오드를 제작하였다. 다이오드의 구조는 $Al/Ta_{2}O_{5}/Al$의 3층 구조로 되어 있다 상부 AI 전극 제작시 하부 AI 전극의 손상을 방지하기 위해 무(無)식각 공정을 개발, 적용하였다. AI 전극을 사용한 결과 단단한 Ta 전각에서 나타난 변형 빛 균열 문제가 해결되었다. 또한 상부 빛 하부의 대칭성 전극 구조로 제작함으로써 I-V 곡선이 완벽한 대칭형의 우수한 전기적 특성을 얻을 수 있었다.

  • PDF

Study on the laser transmission-welding of thermoplastics (열가소성 플라스틱의 레이저 투과 접합에 환한 연구)

  • Seo Myung-hee;Ryu Kwang-hyun;Nam Gi-jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.34-40
    • /
    • 2005
  • Laser welding of thermoplastics is a new jointing technique with a host of advantages. It is not only another extremely useful welding method but also a cost-effective alternative to traditional techniques involving screws or adhesives. Transmission laser-welding of thermoplastics such as polycarbonate(PC), polypropylene(PP), polyvinyl chloride(PVC), low density polyethylene(LDPE) and acrylic using a high power diode laser has been studied experimentally. The optical transmission of each plastic has been measured at laser wavelength of 808nm. The weld process has been characterized by the specific energy and weld time required for each plastic. The characteristics of laser welding between same plastics have also been analyzed.

SNR Improvement in A Wireless Optical Differential Detector Using Plastic Fibers (플라스틱 광섬유를 이용한 무선광 차동검출기의 신호대잡음비 개선)

  • Lee Seong-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.4 s.95
    • /
    • pp.410-417
    • /
    • 2005
  • In this paper, optical noise is reduced by a differential detector with a plastic optical fiber bundle in a wireless optical interconnection. A plastic optical fiber bundle divides the received optical signal equally and connects it to two photodiodes. In this configuration two photodiodes effectively detect the optical signal at one point, and the output voltage variation due to the abrupt change of optical noise distribution in space disappears. The signal to noise ratio in a differential detector with a fiber bundle was improved to be $10\;\cal{dB}$ higher than in a single photodiode with an optical filter.

Laser Welding of Thermoplastics Using the Absorbing Materials (열가소성 플라스틱의 흡수체를 이용한 레이저 접합)

  • Seo M.H.;Ryu K.H.;Nam G.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.430-433
    • /
    • 2005
  • Laser bonding between similar and dissimilar thermoplastics has been investigated by making use of laser transmission weld technique. Spot welding of two layers of plastic materials has been demonstrated by using of a high-quality diode-laser with 808nm wavelength. Weld areas increases according to power density, exposure time. The results of peel out test show that peel strengths increase with the area of molten plastics. Layers, which have the same chemical properties, have good bonding qualities. A bonding method which dye film is coated on the interface is used for laser bonding between plastics with high transmission for laser wavelength. Laser transmission bonding is worthy of attention because it is not in contact, requires a few tooling devices, allows a flexible energy delivery and produces nearly invisible welds

  • PDF

Fabrication of Flexible Thin Film Diode Devices for Plastics film LCO (플라스틱 필름 LCD용 연성 박막 다이오드 소자 제작)

  • 이찬재;홍성제;한정인;김원근
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.218-221
    • /
    • 2002
  • We have successfully developed the high performance flexible thin film diode device for flexible plastic film LCD. For flexible LCD, TFD device must be normally operated under any deformation state. Two type devices, Ti/Ta$_2$O$\sub$5//Ta and Al/Ta$_2$O$\sub$5//Al were fabricated and the symmetry and reliability of those were estimated under various measurement conditions including severely bending states.

  • PDF

Underwater Simultaneous Light Information and Power Transmission using a Laser Diode (레이저 다이오드를 이용한 수중 광 정보 및 전력 동시전송)

  • Kim, Sung-Man;Shin, Jae-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.853-858
    • /
    • 2022
  • In this paper, we show a simultaneous transmission of underwater optical wireless power transfer and underwater optical wireless communication. A laser diode is used for electric-to-optic conversion at the transmitter and a solar cell is used for optic-to-electric conversion at the receiver. We optimized the transmitter and receiver for the best performance. The laser diode is a 100-mW laser diode and showed a conversion efficiency of 18.5%. The experimental results showed a 0.33-% DC-to-DC underwater power transfer efficiency at 5 m and a data rate of 100 kbps at 1 m.