• Title/Summary/Keyword: 프리팹 교량

Search Result 3, Processing Time 0.02 seconds

BIM-based Digital Engineering Modeling Process Proposal for Prefabricated Bridges (BIM 기반 디지털엔지니어링 모델을 활용한 프리팹 교량모델 작성 프로세스)

  • Choi, Jae-Woong;Kim, Hyun-Min;Hong, Sa-Hoon
    • Journal of KIBIM
    • /
    • v.13 no.4
    • /
    • pp.36-44
    • /
    • 2023
  • Recently in Korea, efforts are underway to enhance smart construction by implementing Building Information Modeling (BIM) comprehensively across all sectors of the construction industry. This study focused on the adoption of BIM for prefab bridges currently executed in the industry and It examined the process of creating a BIM-based prefab bridge model that can support production. Additionally, it explored how prefab products made by manufacturers can be integrated with road alignments using BIM technology and how the DfMA (Design for Manufacturing and Assembly) approach, which supports production based on designed information, can be adopted. The process of creating the prefab bridge model aims to shorten production time, reduce costs, and enhance quality by leveraging digital information related to design and manufacturing within the BIM framework

Development of Time-Cost Trade-Off Algorithm for JIT System of Prefabricated Girder Bridges (Nodular GIrder) (프리팹 교량 거더 (노듈러 거더)의 적시 시공을 위한 공기-비용 알고리즘 개발)

  • Kim, Dae-Young;Chung, Taewon;Kim, Rang-Gyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.3
    • /
    • pp.12-19
    • /
    • 2023
  • In the case of the construction industry, the relationship between process and cost should be appropriately distributed so that the finished product can be delivered at the minimum fee within the construction period. At that time, it should be considered the size of the bridge, the construction method, the environment and production capacity of the factory, and the transport distance. However, due to various reasons that occur during the construction period, problems such as construction delay, construction cost increase, and quality and reliability degradation occur. Therefore, a systematic and scientific construction technique and process management technology are needed to break away from the conventional method. The prefab(Pre-Fabrication) is a representative OSC (Off-Site Construction) method manufactured in a factory and constructed onsite. This study develops a resource and process plan optimization system for the process management of the Nodular girder, a prefab bridge girder. A simulation algorithm develops to automatically test various variables in the personnel equipment mobilization plan to derive the optimal value. And, the algorithm was applied to the Paju-Pocheon Expressway Construction (Section 3) Dohwa 4 Bridge under construction, and the results compare. Based on construction work standard product calculation, actual input manpower, equipment type, and quantity were applied to the Activity Card, and the amount of work by quantity counting, resource planning, and resource requirements was reflected. In the future, we plan to improve the accuracy of the program by applying forecasting techniques including various field data.

Definition of Digital Engineering Models for DfMA of Prefabricated Bridges (프리팹 교량의 DfMA를 위한 디지털엔지니어링 모델 정의)

  • Duy-Cuong, Nguyen;Roh, Gi-Tae;Shim, Chang-Su
    • Journal of KIBIM
    • /
    • v.12 no.1
    • /
    • pp.10-22
    • /
    • 2022
  • Prefabricated bridges require strict management of tolerance during fabrication and assembly. In this paper, digital engineering models for prefabricated bridge components such as deck, girder, pier, abutment are suggested to support information delivery through the life-cycle of the bridge. Rule-based modeling is used to define geometry of the members considering variable dimensions due to fabrication and assembly error. DfMA(design for manufacturing and assembly) provides the rules for ease of fabrication and assembly. The digital engineering model consists of geometry, constraints and corresponding parameters for each phase. Alignment and control points are defined to manage tolerances of the prefabricated bridge during fabrication and assembly. Quality control by digital measurement of dimensions was also considered in the model definition. A pilot bridge was defined virtually to validate the suggested digital engineering models. The digital engineering models for DfMA showed excellent potential to realize prefabricated bridges.