• Title/Summary/Keyword: 프리캐스트 콘크리트 바닥판

Search Result 70, Processing Time 0.019 seconds

Experimental Study for the Bending Behavior of Precast Concrete Panel and Composite Deck for Railway Bridge (철도교 바닥판용 프리캐스트 패널과 합성 바닥판의 휨거동에 대한 실험적 연구)

  • Seol, Dae-Ho;Lee, Kyoung-Chan;Youn, Seok-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.21-31
    • /
    • 2018
  • This paper presents an experimental investigation on the structural performance of precast ribbed panel specimens and bridge deck specimens fabricated from the panels. The panel specimens are developed for permanent deck forms of railway bridges (PSC girder). The decks of railway bridges have short lengths compared with highway bridges. Therefore, precast panels for railway bridges are different from those of highway bridges. The precast panels have ribs designed for crack control at the bottom of the sections. Two kinds of specimens were examined: one with 400-mm width and one with 1200-mm width. Three specimens of each type were fabricated, and a total of 12 specimens were tested. In this test, the ultimate load, strain of the reinforcement and concrete, crack width, deformation, and slip were measured. The structural performance of the specimens was assessed using the Korea railway bridge design code and Eurocode. All specimens met the current design criteria for structural strength and serviceability.

Strength of PSC Bridge Decks using Half-Depth Precast Panel with Loop Joint (루프이음 반단면 프리캐스트 패널을 이용한 PSC 바닥판의 강도평가)

  • Chung, Chul Hun;Kim, Yu Seok;Hyun, Byung Hak;Kim, In Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.433-445
    • /
    • 2009
  • The panels are used as a composite part of the completed deck. They replace the main bottom transverse deck reinforcement and also serve as a form surface for the cast-in-place concrete upper layer that contains the top of deck reinforcement. Research has also demonstrated that mechanical shear ties on the top of the panels are required. In a composite deck with precast panels, it is required to notice behavior of transverse joints between panels. In this paper, static tests of composite deck with shear ties and loop joints were conducted. From the results, the validity of loop joints for continuity of deck was observed. Also, a composite behavior was abserved between precast panel and slab concrete. Tested composite decks with shear ties have 140~164% ultimate strength than have no shear ties due to the increase of composite action. Therefore, the shear ties between the slabs were sufficient to enforce composite flexural behavior to failure.

Behavioral Characteristics of Precast Concrete Slab using Wheel Load Tester (윤하중 시험 차량을 활용한 프리캐스트 콘크리트 바닥판의 거동 특성)

  • Park, Seok-Soon;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • The main objective of this research is to present the behaviors of precast concrete slab under moving wheel loads. The simulated moving wheel tester and precast concrete slab were designed for this research. In particular, a comparative analysis between the structural analysis and the moving wheel load test was evaluated in connection parts, deformation, bedding layer of concrete slab panels. In the comparisons of the test results from static and moving wheel loads, the maximum deformations were similar. It should be noted that the deformation of panel 2 from the static loading test was larger than that of other panels, while the deformations of panels 1 and 3 were more noticeable than that of panel 2.

Shear Stiffness of Shear connections in Full-Depth Precast Concrete Deck Bridge (프리캐스트 바닥판 교량 전단연결부의 전단강성)

  • Shim, Chang Su;Chung, Chul Hun;Kim, Chul Young;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.749-758
    • /
    • 1998
  • The evaluation of shear stiffness of shear connection in composite bridges with CIP concrete deck is analysed. Shear stiffness of shear connection in full-depth precast concrete deck bridges is obtained from experiments. 3-dimensional finite element analyses of push-out specimen are carried out to investigate the effects of characteristics of filling material strength in shear connection on shear stiffness and local stress distribution. The load-slip relations obtained from the analyses are compared with those of experiments. The equation of initial shear stiffness of shear connection in precast concrete deck bridge is proposed. Linear analyses are performed to evaluate the effects of the shank diameter of shear connector and the strength of mortar on the characteristics of deterioration and failure load obtained by the failure criterions of each material. The failure loads are estimated and compared with test results.

  • PDF

Evaluation of Static Strength of Group Stud Shear Connection in Precast Concrete Deck Bridges (프리캐스트 콘크리트 바닥판 교량의 그룹 스터드 전단연결부 강도평가)

  • Shim, Chang Su;Jeon, Seung Min;Kim, Dong Wook
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.333-345
    • /
    • 2008
  • concrete deck bridges are increasingly aplied to twin- girder bridges and open-stel box girder bridges.One of the most dificult isues in the design of shear conect ors is the mater of achieving ful composite action. Many connectors in smal area require a significant section los of precast decks resulting in difficult reinforcement details. In this closer spacing than the required minimum spacing in the design codes was evaluated through static tests. Test results s howed that the ultimate strength decreased as the conector spacing was reduced. The strength enhancement was observed due to aditional reinforcement for precast slabs or for shear pockets. Thus, the design of group stud shear connection needs to anticipate failure modes and the conector failure should be induced. Based on the test results, an empirical equation consi dering stud spacing was proposed to evaluate the ultimate strength of group stud shear conection. Fatigue tests showed n o reduction in fatigue life of the group stud shear conection in the range of this research. Details of the precast decks wer e enhanced using the findings of the study.

Applicability Evaluation of Precast Deck to the Maglev Guideway System : Mock-Up Construction Test (프리캐스트 바닥판의 자기부상열차 가이드웨이 시스템 적용성 평가 : 모의 시공 실험)

  • Jin, Byeong-Moo;Kim, In-Gyu;Kim, Young-Jin;Oh, Hyung-Chul;Ma, Hyang-Wook;Lee, Yung-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.57-60
    • /
    • 2008
  • Maglev is a system that a train runs levitated above a rail. Therefore it is very important to maintain a constant levitation gap for achieving serviceability and ride comfort. This study is a cooperation research subject of the 3-1 subject, performance improvement of maglev track structures, of the Center for Urban Maglev Program in Korea, started in 2006. The aim of this study is development of rapid constructions of bridge superstructure for maglev. At present, precast deck is widely used because of its superiority to cast-in-place concrete on quality and the term of works. The research group suggested basic systems of maglev guideway with PSC-U type and trapezoidal open steel box type girder, and precast deck, cooperating with Korea Railroad Research Institute, the managing institute of the 3-1 subject. In this study, a mock-up consisted of girders, decks and rail was fabricated and test was performed for constructability, serviceability and maintenance evaluation of PSC U-type girder, precast deck, and new guide rail system.

  • PDF

Crack Width Control on Concrete Slab using Half-Depth Precast Panels with Loop Joints (루프이음 반두께 프리캐스트 바닥판을 갖는 콘크리트 바닥판의 균열폭 제어)

  • Kim, Dong Wook;Shim, Chang Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.19-29
    • /
    • 2015
  • As the half-depth precast concrete decks are increasingly applied to the construction sites, researches on connection details have been increased. For design of concrete bridge deck with half-depth precast panels, it is required to provide appropriate details of transverse loop joints between panels. In this paper, the structural performance of precast decks was evaluated to investigate continuity of the proposed loop joint details. From the results, the validity of the joints for the continuity of deck was observed in the aspect of flexural strength and crack control. The ultimate strength increased 1.52 times as the reinforcement spacing in the joint was reduced. In terms of crack control, direct crack width calculation for the loop joint showed appropriate results comparing with measured crack width.