• Title/Summary/Keyword: 프로펠러 소음

Search Result 75, Processing Time 0.021 seconds

Cross-rotating Multi-copter (교차회전 멀티콥터)

  • Hwang, SeungJae;Park, YoungMin;Cho, TaeHwan
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.1
    • /
    • pp.47-53
    • /
    • 2019
  • To improve an aerodynamic characteristic of the eVOTL aircraft, Korea Aerospace Research Institute (KARI) performed a validity test of the cross-rotating propeller technology. First, CFD analysis was carried out and an idea of the cross-rotating propeller to imply on a multi-copter confirmed with a commerce pitch control multi-copter that has two different blades, 0.11 and 0.21 m. After verifying the idea, a multi-copter with about 3 kg maximum take-off weight (MTOW) was custom designed to complete a ground test to measure thrust and noise. The test was performed with 15 and 22 in. propellers at the identical tip speed. The test results show that the 22 in. propeller with the cross-rotating technology required about 30 % less power and reduced 3~5 dB aerodynamic noise as compared to 15 in. propeller without cross-rotating.

Development of aerodynamic noise prediction technique for high efficiency and low noise design of unmanned aerial vehicle propeller (멀티로터형 무인항공기 프로펠러의 고효율 및 저소음 설계를 위한 공력 소음 예측 기법 개발)

  • Gwak, Doo Young;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.2
    • /
    • pp.89-99
    • /
    • 2017
  • Multi-rotor type UAV (Unmanned Aerial Vehicle)s are expanding their applications not only for military purposes but also for private industries such as aerial photography and unmanned delivery vehicles. For wider use of unmanned aerial vehicles, studies should be carried out to improve aerodynamic efficiency and reduce noise of propellers, which can be achieved based on techniques of predicting aerodynamic performance and noise in a given environment. In this study, aerodynamic and noise prediction techniques were developed for a small unmanned aerial vehicle propeller, and it was verified by comparing it with actual measurement results. Thrust and torque due to the change of r/min and the frequency spectral prediction at a given position secured the reliability of the prediction method, which provides a basis for the shape design of the propeller.

A Study on Low-noise Propeller Shape Design using Composite Material Molding Method (복합소재 성형공법을 이용한 저소음 프로펠러 형상 설계에 관한 연구)

  • Ungjin Oh;Jin-Taek Lim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.25 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Recently, the paradigm of the aircraft industry, not only domestically but also globally, has been changing significantly starting with the era of the Fourth Industrial Revolution. With the convergence of new technologies such as ICT and AI, the drone market, centered around the military, is expanding its overall services to include the civilian market. Additionally, drones operate by being equipped with batteries, and for product lines that use batteries, lightening the product is one of the critical factors. This is because the lighter the aircraft, the less battery consumption and maximum efficiency. Therefore, recently, composite materials have been used to reduce the weight of the aircraft. To not only reduce weight but also achieve high functionality, it is being applied to most areas such as propellers, airframes, interior materials, floor plates, driving devices, and battery housings, and is emerging as a core technology. In this paper will utilize ceramic fiber composite materials, which have recently emerged for lightweight. It aims to improve noise and strength by targeting propellers, one of the most important factors in drones. In addition, the performance of the propeller developed through the low-noise design will be verified.

Prediction of Marine Propeller Noise Considering Scattering Effect (산란을 고려한 수중 프로펠러 소음해석)

  • Kim, Jong-Do;Hong, Suk-Yoon;Song, Jee-Hun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.5
    • /
    • pp.468-474
    • /
    • 2011
  • Underwater radiated noises from marine vehicles are mostly due to the propulsion systems. Recently, the propeller noise problems are becoming crucial issues in terms of habitability of passenger ships. Especially in military area, propeller noise is directly related to the survivability of submarines and warships, and thus propeller noise analysis and reductions are very important. Generally, propeller noise can be classified into non-cavitating noise and cavitating noise which is dominant. In this paper the methodology of propeller noise analysis is announced and new approach to consider scattering effect is proposed. Unsteady blade surface pressure and sheet cavity volume analyzed with potential based panel method are used as noise source.

Prediction of marine propeller noise with scattering effect (Scattering 을 고려한 수중 프로펠러 소음해석)

  • Kim, Jong-Do;Hong, Suk-Yoon;Song, Jee-Hun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.475-481
    • /
    • 2011
  • Underwater radiated noises from marine vehicles are mostly due to the propulsion systems. Recently, the propeller noise problems are becoming crucial issues in terms of habitability of passenger ships. Especially in military area, propeller noise is directly related to the survivability of submarines and warships, and thus propeller noise analysis and reductions are very important. Generally, propeller noise can be classified into non-cavitating noise and cavitating noise which is dominant. In this paper the methodology of propeller noise analysis is announced and new approach to consider scattering effect is proposed. Unsteady blade surface pressure and sheet cavity volume analyzed with potential based panel method are used as noise source.

  • PDF

A DEMON Processing Robust to Interference of Tonals (토널 신호 간섭에 강인한 데몬 처리 기법)

  • Kim, Jin-Seok;Hwang, Soo-Bok;Lee, Chul-Mok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.6
    • /
    • pp.384-390
    • /
    • 2012
  • Passive sonars employ DEMON(Detection of Envelope Modulation on Noise) processing to extract propeller information from the radiated noise of underwater targets. However, the conventional DEMON processing suffers from the interference of tonal signals because it extracts propeller signals and some types of tonal signals as well. If there are some tonals in the frequency band for DEMON processing, the conventional DEMON processing may additionally extract frequency informations originated from the interaction between different tonals. In this paper, we propose a modified DEMON processing, which can eliminate the interference of the tonals. The proposed algorithm removes tonals in DEMON processing band before demodulation processing, hence results the robustness to the interference of the tonals. Some numerical simulations demonstrate the improved performance of the proposed algorithm against the conventional algorithm.

Exciting Mechanism of Driveline Torsional Vibration and Vibration Reduction Methods (구동축 비틂진동 발생 Mechanism과 진동 감소방안)

  • 박보용;전형식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.163-167
    • /
    • 1990
  • 이 논문에서는 기구학적 특성을 고려, 크랭크 축과 프로펠러 축의 비틈 진동 의 주요 발생 Mechanism에 관하여 요약하고, 발생된 진동 및 소음을 감소시 키기 위한 방법을 저자의 연구수행 결과의 일부와 비교한다[1,2].

  • PDF

Noise-Vibration Phenomenon inducing Propeller on the 55ft Class Sailing Yacht (55피트급 세일링 요트의 프로펠러 유기 소음·진동 현상)

  • Lee, Donchool;Kim, Hobin;Eam, Gitak
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.10a
    • /
    • pp.753-756
    • /
    • 2013
  • The demand for sailing yacht is increasing in consonance the improvement of people's live. These yachts can be dually propelled by wind and by diesel engine power. A singing (humming, whistling) phenomenon induced on the propeller was discovered on a 55-foot catamaran sailing yacht. As a result, an increase in the structural vibration of the stern tube room and propulsion system with abnormal noise was detected due to this flow. In this study, the cause of the phenomenon is investigated and its possible countermeasures proposed.

  • PDF

기어의 진동.소음

  • Park, Chan-Il
    • Journal of the KSME
    • /
    • v.53 no.2
    • /
    • pp.30-34
    • /
    • 2013
  • 기어는 사람에 의해 사용된 가장 중요한 기계 중의 하나이며, 회전하는 두 축 사이에 운동과 동력을 전달하고 회전 방향과 속도를 변경하는 역할을 한다. 기어는 우리가 손에 차는 시계나 벽시계뿐만 아니라 자동차, 기차, 선박, 비행기에서 엔진의 동력을 전달하여 바퀴나 혹은 프로펠러를 돌리기 위해 사용된다. 또한 장난감, 복사기, 팩스, 풍력발전기에 사용하는 등 그 용도가 다양하다. 이 글에서는 기어의 역사를 간단히 살펴보고 기어의 진동 소음에 관련된 연구 주제에 대해 기술한다.

  • PDF