Proceedings of the Korea Information Processing Society Conference
/
2000.04a
/
pp.745-750
/
2000
인터페이스 명세에서 프레임문제(frame problem)란 "특정부분 이외의 모든 프로그램 상태는 변화되지 않는다"는 것을 기술하는 문제이다. 본 논문에서는 프레임문제를 상속을 지원하는 객체지향명세에서 재조명하고 이에 대한 현실적인 접근방법을 제시한다. 먼저 프레임문제를 정형적으로 다루기 위하여 프레임관계(frame relation)라는 개념을 도입한다. 프레임관계는 연산자와 변수간의 관계로 특정 연산자가 어떤 변수를 수정할 수 있는가를 나타낸다. 슈퍼클래스의 프레임관계는 앵커관계(anchoring relation)를 통하여 서브클래스로 확장되는데, 앵커관계는 서브클래스 변수에서 슈퍼클래스 변수로의 사상이다. 앵커관계는 프레임문제 해결의 핵심적인 역할을 한다. 즉, 연산자가 슈퍼클래스의 특정 변수를 수정할 수 있다는 것은 그 변수에 앵커 된 모든 서브클래스 변수를 수정할 수 있다는 것을 의미한다. 앵커관계는 프레임문제의 현실적이고 효과적인 접근방법으로, 널리 보급된 선.후조건문 방식의 인터페이스명세에 잘 접목된다는 부가적인 장점을 가진다.
Proceedings of the Korean Information Science Society Conference
/
2002.04a
/
pp.736-738
/
2002
본 논문에서는 카메라 이동 및 피사체의 움직임 특성을 이용한 움직인 검출 방식을 제안한다. 카메라 이동 및 피사체의 움직임 특성을 파악하여 움직임을 검출하기 위해 이전 프레임과 현재 프레임 간의 화소 차이의 평균 및 화면 내의 물체의 에지 정보를 이용하여 현재 프레임의 움직임 정도를 판단한다. 그리고 움직임 검출의 정확도를 높이기 위해 화소 차이의 평균을 3단계로 나누어 연산한다. 제안된 움직임 검출 방식은 기존의 움직임 검출 방식에서 나타난 문제점을 보완하며 움직임 검출 범위를 높일 수 있음을 컴퓨터 시뮬레이션을 통해 확인할 수 있었으며, 아남 0.25$\mu$m 공정 라이브러리와 Synopsys 툴을 이용해 VHDL로 구현하였다.
Journal of the Korea Society of Computer and Information
/
v.14
no.6
/
pp.117-123
/
2009
In this paper, An algorithm which converts 2D video frames into 3D video frames of parallel looking stereo camea is proposed. The proposed algorithm finds the disparity information between two consecutive video frames and generates 3D video frames from the obtained disparity maps. The disparity information is obtained from the modified iterative convergence algorithm. The method of generating 3D video frames from the disparity information is also proposed. The proposed algorithm uses coherence method which overcomes the video pattern based algorithms.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.251-254
/
2020
비디오 영상으로부터 객체를 추적하는 문제에 있어서 폐색은 오늘날까지도 해결해야하는 문제 중 하나다. 폐색이란 영상 속 찾고자 하는 객체가 이전 프레임에서는 존재했지만 특정 프레임에서는 전경 혹은 다른 객체에 의해 가려져 모습이 보이지 않는 것을 의미한다. 폐색이 나타난 상황에서 해당 객체를 추적하기 위해서는 이전 프레임까지 추적된 정보를 바탕으로 영상에 다시 객체가 나타날 때까지 위치를 잘 예측해야 한다. 본 논문은 비디오 영상의 폐색 환경에 강인한 다중 객체 추적 알고리즘을 제시한다. 이를 위해 딥러닝 기반의 LSTM 구조를 활용하여 객체의 형태 정보를 학습하고 칼만 필터를 이용해 객체의 속도 정보를 학습한다. 두 정보를 조합하여 폐색이 발생하였을 때 객체의 형태와 위치를 예측하여 영상 속에 객체가 다시 등장하더라도 추적 성능을 최대화 한다.
Proceedings of the Korea Information Processing Society Conference
/
2022.11a
/
pp.498-500
/
2022
공공 안전을 위한 영상 감시 시스템이 증가함에 따라 CCTV 관제사가 관제해야 할 영상의 수가 증가하고 있다. 점점 증가하는 관제 영상 수로 인해 CCTV 관제사는 수많은 영상 사이에서 발생하는 살인, 강도, 폭력 등 위급한 이상 상황을 놓치는 문제가 발생할 수 있다. 이러한 문제를 해결하기 위해 최근에는 영상에서 발생하는 이상 상황을 자동으로 탐지하고 CCTV 관제사에게 알려 관제 효율을 향상시키는 연구가 진행되고 있다. 본 논문은 영상에서 발생하는 이상 상황을 자동으로 탐지하기 위해 예측 기반 이상 탐지 방법에 다중 프레임 예측 에러를 활용해서 영상 이상 탐지 정확도를 향상시키는 방법을 제안한다. 결과적으로 제안한 방법을 사용함으로써 프레임 레벨 AUC가 Ped2 데이터 셋에서 92.70%에서 94.56%, Avenue 데이터셋에서 87.37%에서 89.17%로 상승하였다.
Journal of Korea Society of Industrial Information Systems
/
v.6
no.3
/
pp.115-122
/
2001
A scene change detection is an important step for video indexing and retrieval. This paper proposes an algorithm by a phased algorithm for fast and accurate detection of abrupt scene changes in an MPEG compressed domain with minimal decoding requirements and computational effort. The proposed method compares two successive I-frames for locating a scene change occurring within the GOP and uses macroblock-coded type information contained in B-frames to detect the exact frame where the scene change occurred. The algorithm has the advantage of speed, simplicity and accuracy. In addition, it requires less amount of storage. The experiment results demonstrate that the proposed algorithm has better detection performance, such as precision and recall rate, than the existing method using all DC images.
Proceedings of the Korea Information Processing Society Conference
/
2015.10a
/
pp.1502-1505
/
2015
디지털 처리 기술이 발전함에 따라 멀티미디어 장치 및 소프트웨어의 활용도가 증가하고 있다. 특히 이들 장치 및 소프트웨어는 저비용으로 고품질 및 고성능을 갖는 형태로 발전하고 있다. 그러나 본래의 의도와 다르게 불법적인 목적으로 디지털 획득 장치를 이용하는 범죄가 증가하고 있으며, 본 연구팀에서는 이를 차단하기 위하여 센서 패턴 노이즈를 이용한 디지털 영상 획득 장치 판별 기술을 연구해오고 있다. 최근 다양한 범죄에 있어서 동영상이 증거 자료로 활용되고 있으며, 본 논문에서는 동영상에 적용이 가능한 디지털 영상 획득 장치 기술을 연구하는데 있어서 동영상이 갖고 있는 프레임별 특성에 따른 판별 성능에 대하여 실험하고 분석하였다. 실시간으로 촬영한 동영상의 경우 B 프레임이 포함되지 않아, I 프레임과 P 프레임, 그리고 두 프레임을 함께 사용하여 각각에 대한 판별 성능에 대한 비교를 수행하였다. 그 결과 I 프레임과 P 프레임의 차이에 의한 성능의 차이는 있었으나, 장치 판별에 대한 영향은 충분히 무시할 수 있음을 확인할 수 있었다.
Research for video key frame detection has been actively conducted in the fields of computer vision. Recently with the advances on deep learning techniques, performance of key frame detection has been improved, but the various type of video content and complicated background are still a problem for efficient learning. In this paper, we propose a novel method for key frame detection, witch utilizes contrastive learning and memory bank module. The proposed method trains the feature extracting network based on the difference between neighboring frames and frames from separate videos. Founded on the contrastive learning, the method saves and updates key frames in the memory bank, witch efficiently reduce redundancy from the video. Experimental results on video dataset show the effectiveness of the proposed method for key frame detection.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.359-361
/
2000
본 논문에서는 비디오 자막 이미지를 인식하기 위해 필요한 영상 향상의 단계로서 다중 결합을 적용한다. 또한 다중 결합을 위한 동일한 자막의 판단 및 결합된 결과를 재평가하기 위한 방법을 제안한다. 입력된 칼라 이미지로부터 RLS(Run Length Smearing)가 적용된 에지 이미지를 얻고, 수직 및 수평 히스토그램 분포를 이용하여 자막과 자막 영역에 대한 정보를 추출한다. 프레임 내의 자막 영역의 중첩 정도를 이용하여 동일 자막을 판단하고, 동일한 자막을 갖는 프레임들끼리 다중 결합을 수행함으로써 향상된 이미지를 얻는다. 끝으로 결합된 영상에 대한 평가를 수행하여 잘못 결합된 이미지들로 인한 오류를 해결하고 재평가한다. 제안한 방법을 통해, 배경 부분의 잡영이 완화된 자막 이미지를 추출하여 인식의 정확성과 신뢰성을 높일 수 있었다. 또한 동일한 자막의 시작 프레임과 끝 프레임의 위치 파악은 디지털 비디오의 색인 및 검색에 효과적으로 이용될 수 있을 것이다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.150-152
/
2019
본 논문에서는 기존의 연구를 극복하여 단일 영상이 아닌 단안 비디오로부터 5D 라이트필드 영상을 합성하는 딥러닝 프레임워크를 제안한다. 현재 일반적으로 사용 가능한 Lytro Illum 카메라 등은 초당 3프레임의 비디오만을 취득할 수 있기 때문에 학습용 데이터로 사용하기에 어려움이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 가상 환경 데이터를 구성하며 이를 위해 UnrealCV를 활용하여 사실적 그래픽 렌더링에 의한 데이터를 취득하고 이를 학습에 사용한다. 제안하는 딥러닝 프레임워크는 두 개의 입력 단안 비디오에서 $5{\times}5$의 각 SAI(sub-aperture image)를 갖는 라이트필드 비디오를 합성한다. 제안하는 네트워크는 luminance 영상으로 변환된 입력 영상으로부터 appearance flow를 추측하는 플로우 추측 네트워크(flow estimation network), appearance flow로부터 얻어진 두 개의 라이트필드 비디오 프레임 간의 optical flow를 추측하는 광학 플로우 추측 네트워크(optical flow estimation network)로 구성되어있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.