• Title/Summary/Keyword: 프랙탈 지수

Search Result 36, Processing Time 0.024 seconds

Analysis of spatial self-similarity in river basin (하천유역의 공간 자기상사성 분석)

  • Hwang, Eui-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.463-463
    • /
    • 2012
  • 본 연구에서는 유역의 공간적 자기상사성 평가를 통하여 하천유역의 특성을 파악하고자 하였다. 이를 위해 자기상사성 분석의 지표인 허스트지수 및 프랙탈차원을 산정하였다. 허스트지수(h)의 산정은 모형에 있어서 상당히 중요한 부분을 차지한다. 이 지수에 따라 지형의 모양은 서로 상이하게 다루어질 수 있기 때문이다. 허스트지수의 산정은 Hurst가 제시한 방법(허스트지수), Peters의 수정식, Mandebrot와 Wallis의 Pox 도표, 투영면적 및 표면적 비율 방법(면적지수)이 있으며, 본 연구에서는 유역의 공간 자기상성 분석을 위해 면적지수에 의한 방법과 허스트지수에 의한 방법을 적용하였다. 지형자료는 LiDAR 측량 및 하천 횡단측량에 의해 생성된 정밀 DEM을 활용하여 허스트지수 및 프랙탈차원을 산정하였다. 면적지수 및 허스트지수에 의한 프랙탈차원과 평균경사도와의 관계에서 아라천유역은 결정계수 R2값이 94.9 %, 99.5 %로 비교적 결정계수값이 크게 나타났으며, 경사도와 표면적과의 관계에서 결정계수 R2값은 81.8 %로 분석되었다. 이는 면적지수와 허스트지수에 의해 산정된 프랙탈 차원은 유역의 지형특성 인자로 타당성을 갖는 것으로 판단된다.

  • PDF

Brownian Coagulation of Fractal Agglomerates in the Free-molecule Regime (자유분자영역에서 프랙탈 입자의 브라운 응집에 관한 연구)

  • 박성훈;이규원
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.395-396
    • /
    • 2001
  • 고온의 산업공정에서 발생하는 에어로졸 입자들은 많은 기본입자(primary particle)들로 이루어진 불규칙한 사슬구조를 가진다 (Matsoukas and Friedlander, 1991). 이러한 비구형 프랙탈 입자들의 거동은 구형 입자들과 비교할 때 큰 차이를 보인다. 프랙탈 입자들의 부피는 충돌반경의 거듭제곱으로 나타낼 수 있으며, 프랙탈 차원이라 불리는 그 지수는 1에서 3 사이의 값을 가진다. 자유분자영역에서의 브라운 응집에 대한 해석해는 Lee et al.(1990)에 의해 제시된 바 있으나, 이는 구형입자를 가정한 결과였고, 비구형 프랙탈 입자의 거동을 해석하려 할 때는 이로 인한 오차가 발생하게 된다. (중략)

  • PDF

Analysis of Characteristics in Ara River Basin Using Fractal Dimension (프랙탈 차원을 이용한 아라천 유역특성 분석)

  • Hwang, Eui-Ho;Lee, Eul-Rae;Lim, Kwang-Suop;Jung, Kwan-Sue
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.10
    • /
    • pp.831-841
    • /
    • 2011
  • In this study, with the assumption that the geographical characteristics of the river basin have selfsimilarity, fractal dimensions are used to quantify the complexity of the terrain. For this, Area exponent and hurst exponent was applied to estimate the fractal dimension by using spatial analysis. The result shows that the value of area exponent and hurst exponent calculated by the fractal dimension are 2.008~2.074 and 2.132~2.268 respectively. Also the $R^2$ of area exponent and hurst exponent are 94.9% and 87.1% respectively too. It shows that the $R^2$ is relatively high. After analyzing the spatial self-similarity parameter, it is shown that traditional urban area's moderate slope geographical characteristic closed to 2D fractal in Ara water way. In addition, the relation between fractal dimension and geographical elements are identified. With these results, fractal dimension is the representative value of basin characteristics.

Multifractal Stochastic Processes and Stock Prices (다중프랙탈 확률과정과 주가형성)

  • Rhee, Il-King
    • The Korean Journal of Financial Management
    • /
    • v.20 no.2
    • /
    • pp.95-126
    • /
    • 2003
  • This paper introduces multifractal processes and presents the empirical investigation of the multifractal asset pricing. The multifractal stock price process contains long-tails which focus on Levy-Stable distributions. The process also contains long-dependence, which is the characteristic feature of fractional Brownian motion. Multifractality introduces a new source of heterogeneity through time-varying local reqularity in the price path. This paper investigates multifractality in stock prices. After finding evidence of multifractal scaling, the multifractal spectrum is estimated via the Legendre transform. The distinguishing feature of the multifractal process is multiscaling of the return distribution's moments under time-resealing. More intensive study is required of estimation techniques and inference procedures.

  • PDF

Eddy Diffusion in Coastal Seas: Observation and Fractal Diffusion Modelling (연안역와동확산: 관측 및 프랙탈 확산 모델링)

  • 이문진;강용균
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.9 no.3
    • /
    • pp.115-124
    • /
    • 1997
  • We measured the variance of eddy diffusion and associated ‘diffusion coefficients’ in coastal regions of Korea by observing the separation distances among multiple drifters deployed simultaneously at the same initial position. The variance of eddy diffusion was found to be proportional to $t^m$, where t is the time and m is a non-integer scaling exponent between 1.5 and 3.5. The observed scaling exponent of eddy diffusion cannot be reproduced by diffusion models employing constant eddy diffusivity. In this study, we applied fractal theory in simulating exponential increase of variance of eddy diffusion. We employed the fGn(fractional Gaussian noise) as a ‘modified’ random walks corresponding to the oceanic eddy diffusion. The variance of eddy diffusion, which corresponds to the fBm(fractional Brown motion) of our diffusion model, is proportional to $t^{2H}$, where H is Hurst scaling exponent. The temporal increase of the variance. with scaling exponent between 1 and 2, was successfully reproduced by our fractal diffusion model. However, our model cannot reproduce scaling exponent greater than 2. The scaling exponents greater than 2 are associated with the velocity shear of the mean flow.

  • PDF

Development of Topography Restoration Model using Fractal Method (프랙탈을 이용한 지형복원 모형개발)

  • Kwon, Kee-Wook;Ahn, Byung-Gu;Lee, Jong-Dal
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.123-135
    • /
    • 2006
  • In this study, in order to maximize the accuracy and efficiency of the existing interpolation method fractal methods are applied. Developed FEDISA model revives the irregularity of the real topography with only a few information about base topography, which can produce almost complete geographic information. Moreover, as a tool for examining the adaptability and efficiency of the model, index of slope range $I_{SR}$, index of surface $I_{SA}$, and index of volume $I_V$ were developed. The model area is respectively set to $75m{\times}75m$, $150m{\times}150m$, $300m{\times}300m$, $600m{\times}600m$, and $1,200m{\times}1,200m$, and then the data obtained by combining the existing interpolation methods and FEDISA model were compared with real measurements. The result of the study showed the adaptability and efficiency of FEDISA model in topography restoration.

  • PDF

The Analysis of Terrain and Topography using Fractal (프랙탈 기법에 의한 지형의 특성분석)

  • Kwon, Kee-Wook;Jee, Hyung-Kyu;Lee, Jong-Dal
    • Journal of the Korean association of regional geographers
    • /
    • v.11 no.6
    • /
    • pp.530-542
    • /
    • 2005
  • In this study, GIS method has been used to get fractal characteristics. Using the projected area and surface area, 2 dimensional fractal characteristic of terrain was found out. Correlation of fractal dimension and mean slope were also checked over. Results are as below. 1) To get a fractal dimension, the method which is using the surface area is also directly proportional to complexity of the terrain as other fractal dimension. 2) Fractal dimensions using the surface area, that is proposed in this thesis are carried out as below : Uiseong : $2.02{\sim}2.15$ Yeongcheon : $2.10{\sim}2.24$. These values are in a range of fractal $2.10{\sim}2.20$ dimensions which has known. 3) Correlation of mean slope and fractal dimension is diminished about 30% in a region which is more than $25^{\circ}$ of mean slope. So, in this region using the fractal dimension method is better than using the mean slope. From this study, on formula using the projected area and surface area is still good to get a fractal dimension that has been found. But to confirm this method the region of research should be wider and be set up the correlation of mean slope, surface area and fractal dimension. It can be applicable to restoration of terrain and traffic flow analysis in the future research.

  • PDF

Applicability of a Space-time Rainfall Downscaling Algorithm Based on Multifractal Framework in Modeling Heavy Rainfall Events in Korean Peninsula (강우의 시공간적 멀티프랙탈 특성에 기반을 둔 강우다운스케일링 기법의 한반도 호우사상에 대한 적용성 평가)

  • Lee, Dongryul;Lee, Jinsoo;Kim, Dongkyun
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.9
    • /
    • pp.839-852
    • /
    • 2014
  • This study analyzed the applicability of a rainfall downscaling algorithm in space-time multifractal framework (RDSTMF) in Korean Peninsula. To achieve this purpose, the 8 heavy rainfall events that occurred in Korea during the period between 2008 and 2012 were analyzed using the radar rainfall imagery. The result of the analysis indicated that there is a strong tendency of the multifractality for all 8 heavy rainfall events. Based on the multifractal exponents obtained from the analysis, the parameters of the RDSTMF were obtained and the relationship between the average intensity of the rainfall events and the parameters of the RDSTMF was developed. Based on this relationship, the synthetic space-time rainfall fields were generated using the RDSTMF. Then, the generated synthetic space-time rainfall fields were compared to the observation. The result of the comparison indicated that the RDSTMF can accurately reproduce the multifractal exponents of the observed rainfall field up to 3rd order and the cumulative density function of the observed space-time rainfall field with a reasoable accuracy.

Creation of Fractal Images with Rotational Symmetry Based on Julia Set (Julia Set을 이용한 회전 대칭 프랙탈 이미지 생성)

  • Han, Yeong-Deok
    • Journal of Korea Game Society
    • /
    • v.14 no.6
    • /
    • pp.109-118
    • /
    • 2014
  • We studied the creation of fractal images with polygonal rotation symmetry. As in Loocke's method[13] we start with IFS of affine functions that create polygonal fractals and extends the IFS by adding functions that create Julia sets instead of adding square root functions. The resulting images are rotationally symmetric and Julia set shaped. Also we can improve fractal images by modifying probabilistic IFS algorithm, and we suggest a method of deforming Julia set by changing exponent value.

Fractal characteristics of spatial variance in atmospheric pressure (기압의 공간 편차에서 나타나는 프랙탈 특성)

  • Kim, JongChun;Paik, Kyungrock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.4-4
    • /
    • 2015
  • 기압 분포의 공간 구조를 이해하고, 그것의 변동을 살펴보는 것은 풍속의 경향을 파악하는 것은 물론, 장기적인 측면에서는 기후변화를 예측하기 위한 기본 과정이라 할 수 있다. 본 연구에서는 장기간에 걸쳐 공간적으로 연속적인 관찰이 가능한 20CR(20th Century Reanalysis) 원격탐사 재분석 자료의 지오포텐셜(geopotential) 값을 활용하여 동아시아 지역 기압의 공간 분포를 살펴보았다. 그 결과 특정 범위 내에서 계산되는 기압의 편차 값과 해당 범위를 정의하는 수평 거리 사이의 관계(변동도; variogram)가 멱함수를 따르는 것을 확인하였다. 흥미로운 점은 지난 반세기 동안 멱함수의 계수 값이 풍속과 동일한 패턴으로 변화하는 반면, 지수 값 (프랙탈 차원)은 일정하게 유지되고 있다는 사실이다. 또한, 2000년 이후로는 계절 별로 한랭한 기단 (겨울철)과 온난한 기단 (여름철)이 번갈아가며 동아시아 지역으로 세력을 확장하는 경향을 보였으며, 그로인해 전반적인 기압의 편차가 증가하였다.

  • PDF