• Title/Summary/Keyword: 프라이버시 보존

Search Result 47, Processing Time 0.03 seconds

An efficient privacy-preserving data sharing scheme in social network (소셜 네트워크에 적합한 효율적인 프라이버시 보호 데이터 공유 기법)

  • Jeon, Doo-Hyun;Chun, Ji-Young;Jeong, Ik-Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.3
    • /
    • pp.447-461
    • /
    • 2012
  • A social network service(SNS) is gaining popularity as a new real-time information sharing mechanism. However, the user's privacy infringement is occurred frequently because the information that is shared through a social network include the private information such as user's identity or lifestyle patterns. To resolve this problem, the research about privacy preserving data sharing in social network are being proceed actively. In this paper, we proposed the efficient scheme for privacy preserving data sharing in social network. The proposed scheme provides an efficient conjunctive keyword search functionality. And, users who granted access right to storage server can store and search data in storage server. Also,, our scheme provide join/revocation functionality suited to the characteristics of a dynamic social network.

Privacy Preserving Source Based Deduplication In Cloud Storage (클라우드 스토리지 상에서의 프라이버시 보존형 소스기반 중복데이터 제거기술)

  • Park, Cheolhee;Hong, Dowon;Seo, Changho;Chang, Ku-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.1
    • /
    • pp.123-132
    • /
    • 2015
  • In cloud storage, processing the duplicated data, namely deduplication, is necessary technology to save storage space. Users who store sensitive data in remote storage want data be encrypted. However Cloud storage server do not detect duplication of conventionally encrypted data. To solve this problem, Convergent Encryption has been proposed. But it inherently have weakness due to brute-force attack. On the other hand, to save storage space as well as save bandwidths, client-side deduplication have been applied. Recently, various client-side deduplication technology has been proposed. However, this propositions still cannot solve the security problem. In this paper, we suggest a secure source-based deduplication technology, which encrypt data to ensure the confidentiality of sensitive data and apply proofs of ownership protocol to control access to the data, from curious cloud server and malicious user.

Privacy-Preserving k-means Clustering of Encrypted Data (암호화된 데이터에 대한 프라이버시를 보존하는 k-means 클러스터링 기법)

  • Jeong, Yunsong;Kim, Joon Sik;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1401-1414
    • /
    • 2018
  • The k-means clustering algorithm groups input data with the number of groups represented by variable k. In fact, this algorithm is particularly useful in market segmentation and medical research, suggesting its wide applicability. In this paper, we propose a privacy-preserving clustering algorithm that is appropriate for outsourced encrypted data, while exposing no information about the input data itself. Notably, our proposed model facilitates encryption of all data, which is a large advantage over existing privacy-preserving clustering algorithms which rely on multi-party computation over plaintext data stored on several servers. Our approach compares homomorphically encrypted ciphertexts to measure the distance between input data. Finally, we theoretically prove that our scheme guarantees the security of input data during computation, and also evaluate our communication and computation complexity in detail.

Privacy-Preserving Kth Element Score over Vertically Partitioned Data on Multi-Party (다자 간 환경에서 수직 분할된 데이터에서 프라이버시 보존 k번째 항목의 score 계산)

  • Hong, Jun Hee;Jung, Jay Yeol;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1079-1090
    • /
    • 2014
  • Data mining is a technique to get the useful information that can be utilized for marketing and pattern analysis by processing the data that we have. However, when we use this technique, data provider's personal data can be leaked by accident. To protect these data from leakage, there were several techniques have been studied to preserve privacy. Vertically partitioned data is a state called that the data is separately provided to various number of user. On these vertically partitioned data, there was some methods developed to distinguishing kth element and (k+1) th element by using score. However, in previous method, we can only use on two-party case, so in this paper, we propose the extended technique by using paillier cryptosystem which can use on multi-party case.

Improving Efficiency of Encrypted Data Deduplication with SGX (SGX를 활용한 암호화된 데이터 중복제거의 효율성 개선)

  • Koo, Dongyoung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.8
    • /
    • pp.259-268
    • /
    • 2022
  • With prosperous usage of cloud services to improve management efficiency due to the explosive increase in data volume, various cryptographic techniques are being applied in order to preserve data privacy. In spite of the vast computing resources of cloud systems, decrease in storage efficiency caused by redundancy of data outsourced from multiple users acts as a factor that significantly reduces service efficiency. Among several approaches on privacy-preserving data deduplication over encrypted data, in this paper, the research results for improving efficiency of encrypted data deduplication using trusted execution environment (TEE) published in the recent USENIX ATC are analysed in terms of security and efficiency of the participating entities. We present a way to improve the stability of a key-managing server by integrating it with individual clients, resulting in secure deduplication without independent key servers. The experimental results show that the communication efficiency of the proposed approach can be improved by about 30% with the effect of a distributed key server while providing robust security guarantees as the same level of the previous research.

Side-Channel Attacks on Homomorphic Encryption and Their Mitigation Methods (동형암호에 대한 부채널 공격과 대응에 관한 연구)

  • Kevin Nam;Youyeon Joo;Seungjin Ha;Yunheung Paek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.212-214
    • /
    • 2023
  • 동형암호는 주목받는 차세대 프라이버시 보존 기술이다. 많은 기업들이 이를 활용한 서비스들을 제공하고 있다. 비록 동형암호가 수학적으로 안전성을 인정받았지만, 실행되는 프로그램으로써 동형암호는 부채널공격들에 취약하다는 연구 결과들이 보고되고 있다. 이 논문은 이런 부채널공격들에 대해 본석, 일반화하여 사용 가능한 gadget을 소개하며, 대응기법에 대한 가이드라인을 제안하고 그 효과와 한계에 대해 분석한다.

Quantization of Non-Arithmetics to Optimize CNNs over TFHE (TFHE 기반 CNN 연산 최적화를 위한 비산술연산의 양자화 기술 연구)

  • Kevin Nam;Heonhui Jung;Dongju Lee;Yunheung Paek
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.404-407
    • /
    • 2024
  • 동형암호는 주목받는 차세대 프라이버시 보존 기술이며, 이를 활용한 신경망 연산 연구들이 많이 수행되고 있다. 여러 체계들 중 TFHE는 비산술 연산을 직접 연산할 수 있으나 다른 체계들보다 매우 느리다는 단점이 있다. 본 연구는 정확도 하락을 최소화하며 성능 개선을 통해 다른 체계인 CKKS보다 빠른 TFHE기반 CNN 연산이 가능하도록 하는 TFHE 비산술 연산의 양자화 기술을 소개한다.

Dummy Data Insert Scheme for Privacy Preserving Frequent Itemset Mining in Data Stream (데이터 스트림 빈발항목 마이닝의 프라이버시 보호를 위한 더미 데이터 삽입 기법)

  • Jung, Jay Yeol;Kim, Kee Sung;Jeong, Ik Rae
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.3
    • /
    • pp.383-393
    • /
    • 2013
  • Data stream mining is a technique to obtain the useful information by analyzing the data generated in real time. In data stream mining technology, frequent itemset mining is a method to find the frequent itemset while data is transmitting, and these itemsets are used for the purpose of pattern analyze and marketing in various fields. Existing techniques of finding frequent itemset mining are having problems when a malicious attacker sniffing the data, it reveals data provider's real-time information. These problems can be solved by using a method of inserting dummy data. By using this method, a attacker cannot distinguish the original data from the transmitting data. In this paper, we propose a method for privacy preserving frequent itemset mining by using the technique of inserting dummy data. In addition, the proposed method is effective in terms of calculation because it does not require encryption technology or other mathematical operations.

Privacy-Preserving Estimation of Users' Density Distribution in Location-based Services through Geo-indistinguishability

  • Song, Seung Min;Kim, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.161-169
    • /
    • 2022
  • With the development of mobile devices and global positioning systems, various location-based services can be utilized, which collects user's location information and provides services based on it. In this process, there is a risk of personal sensitive information being exposed to the outside, and thus Geo-indistinguishability (Geo-Ind), which protect location privacy of LBS users by perturbing their true location, is widely used. However, owing to the data perturbation mechanism of Geo-Ind, it is hard to accurately obtain the density distribution of LBS users from the collection of perturbed location data. Thus, in this paper, we aim to develop a novel method which enables to effectively compute the user density distribution from perturbed location dataset collected under Geo-Ind. In particular, the proposed method leverages Expectation-Maximization(EM) algorithm to precisely estimate the density disribution of LBS users from perturbed location dataset. Experimental results on real world datasets show that our proposed method achieves significantly better performance than a baseline approach.

Federated Deep Reinforcement Learning Based on Privacy Preserving for Industrial Internet of Things (산업용 사물 인터넷을 위한 프라이버시 보존 연합학습 기반 심층 강화학습 모델)

  • Chae-Rim Han;Sun-Jin Lee;Il-Gu Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1055-1065
    • /
    • 2023
  • Recently, various studies using deep reinforcement learning (deep RL) technology have been conducted to solve complex problems using big data collected at industrial internet of things. Deep RL uses reinforcement learning"s trial-and-error algorithms and cumulative compensation functions to generate and learn its own data and quickly explore neural network structures and parameter decisions. However, studies so far have shown that the larger the size of the learning data is, the higher are the memory usage and search time, and the lower is the accuracy. In this study, model-agnostic learning for efficient federated deep RL was utilized to solve privacy invasion by increasing robustness as 55.9% and achieve 97.8% accuracy, an improvement of 5.5% compared with the comparative optimization-based meta learning models, and to reduce the delay time by 28.9% on average.