• Title/Summary/Keyword: 퓨젼 영상

Search Result 6, Processing Time 0.019 seconds

A study on the overlay of Remote Sensing Images for different season and DEM Matching Technique (다른 시기별 원격탐지 영상의 중첩 및 DEM 매칭기법 연구)

  • 연상호;홍일화
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.10a
    • /
    • pp.385-389
    • /
    • 2003
  • 최근 고해상도의 인격탐사 위성영상을 이용한 국토공간정보의 환용은 국토계획, 자원조사, 농림업, 건설계획, 국방분야, 환경감시 및 방재, 관광조사 등 여러 분야에서 다양하게 적용되고 있다. 본 연구에서는 과거에 저해상도의 위성영상을 이용하여 수십년전의 지형공간의 조사와 분석을 위한 서로 다른 촬영 시기와 해상도가 다른 Corona 위성사진과 Landsat 위성영상을 합성하여 새로운 퓨젼영상을 생성하는 방법과 퓨젼영상 위에 DEM을 매칭하여 적용하기 위한 벡터데이터 매칭시에 발생할 수 있는 오차의 정도를 확인하기 위한 실험을 통하여 과거 영상복원에 적절한 중첩과 매치의 기법을 발견하여 좀더 정확한 공간정보의 활용 가능성을 제시하고자 하였다.

  • PDF

A Study on the Technique of Fusion Image Generation for Ground Resolution Enhancement of Low Resolution Remote Sensing Data (저해상도 원격탐사 데이터의 지상해상도 향상을 위한 퓨전영상 생성기법 연구)

  • 연상호;박희주
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.11a
    • /
    • pp.384-388
    • /
    • 2003
  • 현재 고해상도의 원격탐사 영상을 이용하기 위해서는 고가의 비용을 부담해야 하고 데이터의 용량도 매우 커서 실제로 사용에는 대부분의 사람들이 매우 소극적이다. 이미 수집된 저해상도의 활발한 활용을 위해서는 값이 저렴하면서도 해상도가 좋은 분광력이나 지상해상도를 높여주어야 한다. 따라서 본 연구에서는 해상도가 각기 다른 영상을 관련 자료들을 근거로 20년 전에 저해상도인 30m의 위성영상과 5m의 고해상도 위성사진과의 합성을 통하여 저해상도에서 판독할 수 없었던 여러 종류의 지형지물을 파악할 수 있는 고해상도의 퓨젼 영상을 생성시킨 것이다.

  • PDF

A Study on the Comparison of Channel Selection and Precision Geometric Correction for Image Restoration of an Submerged Water (수몰 지역의 영상복원을 위한 정밀기하보정 및 채널선정 비교연구)

  • Yeon, Sang-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • It's a very meaningful experimental study to image restoration of ancient villages vanished at the real life spatial world. Focused on Cheung-Pyung Lake around where most part were flooded by the Chung-Ju large dam founded in early 1980s, we used remote sensing technique in this study in order to restore topographical features before the flood with 3 dimensional effects. It was gathered comparatively good satellite photos and remotely sensed digital images, then its made a new color image from these and the topographical map which had been made before filled water. This task was putting together two kinds of different timed images. And then, we generated DEM(digital elevation model) including the outskirts of that area as harmonizing current contour lines with the map. That could be a perfect 3D image of Cheung-Pyung around before when it had been flood by making perspective images from all directions, north, south, east and west, for showing there in three dimensions. Also, flying simulation we made for close visiting can bring us to experience their real space at that time.

  • PDF

A Study on the Availability of the On-Board Imager(OBI) and Cone-Beam CT(CBCT) in the Verification of Patient Set-up (온보드 영상장치(On-Board Imager) 및 콘빔CT(CBCT)를 이용한 환자 자세 검증의 유용성에 대한 연구)

  • Bak, Jino;Park, Sung-Ho;Park, Suk-Won
    • Radiation Oncology Journal
    • /
    • v.26 no.2
    • /
    • pp.118-125
    • /
    • 2008
  • Purpose: On-line image guided radiation therapy(on-line IGRT) and(kV X-ray images or cone beam CT images) were obtained by an on-board imager(OBI) and cone beam CT(CBCT), respectively. The images were then compared with simulated images to evaluate the patient's setup and correct for deviations. The setup deviations between the simulated images(kV or CBCT images), were computed from 2D/2D match or 3D/3D match programs, respectively. We then investigated the correctness of the calculated deviations. Materials and Methods: After the simulation and treatment planning for the RANDO phantom, the phantom was positioned on the treatment table. The phantom setup process was performed with side wall lasers which standardized treatment setup of the phantom with the simulated images, after the establishment of tolerance limits for laser line thickness. After a known translation or rotation angle was applied to the phantom, the kV X-ray images and CBCT images were obtained. Next, 2D/2D match and 3D/3D match with simulation CT images were taken. Lastly, the results were analyzed for accuracy of positional correction. Results: In the case of the 2D/2D match using kV X-ray and simulation images, a setup correction within $0.06^{\circ}$ for rotation only, 1.8 mm for translation only, and 2.1 mm and $0.3^{\circ}$ for both rotation and translation, respectively, was possible. As for the 3D/3D match using CBCT images, a correction within $0.03^{\circ}$ for rotation only, 0.16 mm for translation only, and 1.5 mm for translation and $0.0^{\circ}$ for rotation, respectively, was possible. Conclusion: The use of OBI or CBCT for the on-line IGRT provides the ability to exactly reproduce the simulated images in the setup of a patient in the treatment room. The fast detection and correction of a patient's positional error is possible in two dimensions via kV X-ray images from OBI and in three dimensions via CBCT with a higher accuracy. Consequently, the on-line IGRT represents a promising and reliable treatment procedure.

A Experimental Study on the 3-D Image Restoration Technique of Submerged Area by Chung-ju Dam (충주댐 수몰지구의 3차원 영상복원 기법에 관한 실험적 연구)

  • 연상호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.21-27
    • /
    • 2004
  • It will be a real good news fer the people who were lost their hometown by the construction of a large dam to be restored to the farmer state. Focused on Cheung-pyung around where most part were submerged by the Chungju large Dam founded in eurly 1980s, It used remote sensing image restoration Technique in this study in order to restore topographical features before the flood with stereo effects. We gathered comparatively good satellite photos and remotely sensed digital images, then its made a new fusion image from these various satellite images and the topographical map which had been made before the water filled by the DAM. This task was putting together two kinds of different timed images. And then, we generated DEM including the outskirts of that area as matching current contour lines with the map. That could be a perfect 3D image of test areas around before when it had been water filled by making perspective images from all directions included north, south, east and west, fer showing there in 3 dimensions. Also, for close range visiting made of flying simulation can bring to experience their real space at that time. As a result of this experimental task, it made of new fusion images and 3-D perspective images and simulation live images by remotely sensed photos and images, old paper maps about vanished submerged Dam areas and gained of possibility 3-D terrain image restoration about submerged area by large Dam construction.

Development of Mean Stand Height Module Using Image-Based Point Cloud and FUSION S/W (영상 기반 3차원 점군과 FUSION S/W 기반의 임분고 분석 모듈 개발)

  • KIM, Kyoung-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.169-185
    • /
    • 2016
  • Recently mean stand height has been added as new attribute to forest type maps, but it is often too costly and time consuming to manually measure 9,100,000 points from countrywide stereo aerial photos. In addition, tree heights are frequently measured around tombs and forest edges, which are poor representations of the interior tree stand. This work proposes an estimation of mean stand height using an image-based point cloud, which was extracted from stereo aerial photo with FUSION S/W. Then, a digital terrain model was created by filtering the DSM point cloud and subtracting the DTM from DSM, resulting in nDSM, which represents object heights (buildings, trees, etc.). The RMSE was calculated to compare differences in tree heights between those observed and extracted from the nDSM. The resulting RMSE of average total plot height was 0.96 m. Individual tree heights of the whole study site area were extracted using the USDA Forest Service's FUSION S/W. Finally, mean stand height was produced by averaging individual tree heights in a stand polygon of the forest type map. In order to automate the mean stand height extraction using photogrammetric methods, a module was developed as an ArcGIS add-in toolbox.