• Title/Summary/Keyword: 풍화(風化)

Search Result 1,625, Processing Time 0.026 seconds

An Evaluation of Shear Strength Parameters$(c,\varphi)$ for Weathering Decomposed Granite Soil (화강풍화토의 전단정수$(c,\varphi)$ 평가)

  • 이문수;이광찬
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.181-194
    • /
    • 1999
  • Both the chemical components and the physical and mechanical properties of the compacted and undisturbed weathered granite soils were estimated to investigate the influences of the degree of weathering and saturation on the shear strength. The weathered granite soils used in this study were taken from six different sites in Korea. The results showed that the shear strength of weathered granite soil decreased with increasing the degree of weathering and saturation. Under the normal stresses less that 40kPa, the shape of Mohr-Coulomb failure envelope followed curved or hyperbolic relationship and a half of cohesion value obtained by the common shear test was observed. Using the Sueoka's method, the values of CWI were ranged from 21.5 to 31.26 which can be characterized as a completely weathered granite soil. Large decrease in shear strength and remarkable variation in dilatancy were observed in saturated granite soil compared to unsaturated soil. It was also found that the shear strength of undisturbed weathered granite soil of Pungam site can be expressed approximately by the equation of ${(\tau)_{sat}= 1.0(\tau)_{unsat}-12.48}$ and this equation can be extended to the other sites considered in this study.

  • PDF

Bearing Capacity and Settlement Characteristics of Weathered Granite Masses in Gyeonggi Area (경기지역 화강 풍화암반의 지지력 및 침하특성에 관한 연구)

  • Kim, Dong-Eun;Huh, Kyung-Han
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.4 s.19
    • /
    • pp.37-47
    • /
    • 2005
  • The purpose of this study is to estimate the bearing capacity and settlement characteristics of the weathered granite masses, and on the process to achieve the purpose, in the first place, the weathered degree according to the absorption index was examined and reviewed, then plate bearings test in in-situ depth were tested, and finally the result was compared and examined with the result of the existing, estimate method and pressuremeter test. In order to achieve the purpose of this study, a typical area distributed with weathered granite masses, gyeonggi area, was chosen as a sample site for testing, and in the result, it appeared and found out that the more the weathered degree increases when the plate bearing test are tested, the more the bearing capacity decreases a numerical indexes and the more greatly the width of the decrease of bearing capacity increases around the boundary of specific, weathered degrees. Also, In the result from estimating the bearing capacity of weathered granite masses by the existing, suggested formula, it appeared that there is a tendency that the more the weathered degree increases, the more similar the bearing capacity becomes with the result of plate bearing tests.

Analysis of Rock Surface Roughness and Chemical Species Generation by Freeze-Thaw Experiments (동결융해 실험을 통한 암석 표면 거칠기 및 화학종 생성에 관한 분석)

  • Choi, Junghae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.299-311
    • /
    • 2022
  • Rocks exposed to the surface are subject to long-term weathering, and such effects weaken their engineering stability. Especially as weathering progresses, the surface of rocks will be changed by weathering, and such surface changes will affect the engineering safety of the rock mass. In addition, the chemical species produced in the weathered rock have a direct effect on the surrounding environment or on the structure. In areas where rocks are exposed, such as mining areas, chemical species produced by weathering can have a serious impact on the surrounding natural environment. In this study, accelerated weathering experiments using freeze/thaw system were conducted on rocks that had already been weathered and fresh rocks, and surface changes of each rock were observed with confocal laser scanning microscope (CLSM), and chemical species were analyzed using IC/ICP-MS. As the weathering progressed, the surface roughness decreased, and the amount of chemical species produced increased. The results of this study can be used as basic data for evaluating engineering/environmental safety in areas where rocks are exposed.

A Study on the Chemical Index of Alteration of Igneous Rocks (화성암의 화학적 변질지수에 관한 연구)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Kim, In-Soo;Lee, Kyu-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.41-54
    • /
    • 2012
  • The weathering process of rocks leads to the reduction of geotechnical bearing capacity. The weathering of granite is frequently used to refer to the degradation of geotechnical property in the design and construction of infra-structure. In this study, the range of values of CIA (chemical index of alteration) and the change of mineral compositions by weathering have been analysed with igneous rock, which covers 45.5% in South Korean territory. Several weathering indices were studied for various rocks found in Korea and significant relationships between different indices were delineated via statistical analysis. The applicability of CIA was found to be the most significant among all weathering indicies. The composition of illite, the secondary weathering residual, generally increases for the felsic rock, and swelling clay material is not included. The weathering of felsic rock will follow a sequential process, starting from bed rock, illite, and chlorite to kaoline. The mafic rock will show weathering process, from bed rock, smectite, and chlorite to kaoline. The intermediate rocks such as andesite and tuff will show similar weathering procedure and the composition of kaoline, chlorite, and smectite tends to increase more than that of illite when the mafic rock is dominated. This means the increase of rock material which has high CEC (cation exchange capacity) during secondary weathering process. However, the characteristics of a specific rock cannot be completely analyzed using merely CIA, since it is exclusively based on chemical composition and corresponding alteration. The CIA can be used to quantify the weathering process in a limited range, and further considerations such as rock composition, strength characteristics will be required to configure the comprehensive weathering impact on any specific region.

Chemical Weathering Index of Clastic Sedimentary Rocks in Korea (국내 쇄설성 퇴적암의 화학적 풍화지수 고찰)

  • Kim, Sung-Wook;Choi, Eun-Kyoung;Kim, Jong-Woo;Kim, Tae-Hyung;Lee, Kyu-Hwan
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.67-79
    • /
    • 2017
  • Evaluation of the weathering index using the quantitative element composition of rocks is very effective in predicting the degree of weathering of rocks and the secondary weathering residuals. While the process of weathering varies according to the types of rocks, the study of weathering in Korea is concentrated on acidic igneous rocks. This study calculated the weathering indices using whole rock analysis (X-ray fluorescence analysis) of sandstone, mudstone, and shale belonging to clastic sedimentary rocks. The statistical significance of the indices was examined based on the correlation of the calculated weathering indices. Clastic sedimentary rocks showed higher significance of Wp, CIA, CIW and PIA weathering index indicating weathering of feldspar. Chemical Index of alteration (CIA) has the advantage of predicting weathering pathway and clay mineral production, but it is effective to consider chemical index of weathering index (CIW) simultaneously to improve accuracy. In order to reduce uncertainties due to carbonate rocks and to estimate the accurate weathering index, rock samples with high CaO content should be excluded from the evaluation of weathering index.

Mineralogical Changes in the Weathering Profiles of Carnin Gneiss in the Yoogoo Area, Korea (유구지역 화강암질 편마암의 풍화작용에 의한 광물 조성의 변화)

  • 이석훈;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.121-137
    • /
    • 2000
  • Weathering profiles which were developed under a temperate, humid environment and relatively steep geography, show a thick saprolite and soil horiaon in the Precambrian granitic gneiss of the Yoogoo area. In the weathering profiles, secondary minerals such as interstratified biotite/vermiculite, tri- or di-octahedral vermiculite, halloysite, kaolinite, illite, smectite, gibsite and geothite were observed. Kaolinization of biotite is the most prevalent mechanism but vermiculitization is a minor from all ofweathering profiles. Biotite altered to B/V mixed layer-vermiculite, to illite and to halloysite, kaolinite and gibbsite. Halloysite is the most frequently observed weathering product of biotite in these profiles. Goethite is observed at the around or opened fissures of altered biotite. Tubular halloysite aggregates was fDrmed from dissolution-precipitation of plagioclase. The occurrence of halloysite aggregates is divided into a preferentially oriented type and a wrinkled one which were resulted from the dissolved type of plagioclase. Fe-bearing minerals have also been subjected to dissolution leaving the precipitation of geothite along dissolution voids. The profile of granitic gneiss is a typical weathering pattern showing a clay minerals increase toward the surface. Weathering of minerals were controlled by locally acidic and good-drainage environment, and formed a various and complicated secondary minerals in this study area.

  • PDF

Analysis of Weathered State on a Halo Stone Buddha, Unju Temple of Hwasun, Korea Using Low Frequency Flaw Detector (저주파 결함 탐지기를 활용한 화순 운주사 광배석불의 풍화상태 분석)

  • Kang, Seong-Seung;Ko, Chin-Surk;Kim, Cheong-Bin;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.23 no.3
    • /
    • pp.235-246
    • /
    • 2013
  • P-wave velocity was measured by the low frequency flaw detector in order to analyze the weathered state of a halo stone Buddha, Unju temple, Hwasun, Korea. By the results of laboratory tests on a fresh acidic tuff with the same rock of a halo stone Buddha, average absorption, average P-wave velocity, and average uniaxial compressive strength were 5.38%, 4,008 m/s, and 70.1 MPa, respectively. The results correspond to moderately strong rock. Average P-wave velocity of a halo stone Buddha measured by the low frequency flaw detector was 2,257 m/s in the left zone, 3,437 m/s in the right zone, and 2,802 m/s overall. Weathering index of a halo stone Buddha was 0.45 in the left zone, 0.21 in the right zone, and 0.33 overall. Comparing the results of a halo stone Buddha with them of laboratory tests, weathered state of a halo stone Buddha was analyzed highly weathered state in the left zone and moderately weathered state in the right zone. Furthermore, it suggests that the left zone of a halo stone Buddha was affected weathering more than the right one. Overall a halo stone Buddha corresponds to moderately weathered state of weathering degrees. In conclusion, it is considered that low frequency flaw detector may be applicable as a valuable method on analyzing the P-wave velocity of the stone cultural heritage with an irregular surface.

Variations of Mechanical Properties of Hallasan Trachyte with respect to the Degree of Weathering (풍화진행에 따른 한라산조면암의 역학적 특성변화)

  • Cho, Tae-Chin;Lee, Sang-Bae;Hwang, Taik-Jean;Won, Kyung-Sik
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.287-303
    • /
    • 2009
  • Rock mass in Baekrokdam at the summit of Hallasan in Jeju island is composed of two volcanic rock types: Baekrokdam trachybasalt at the eastern region and Hallasan trachyte at the western region. On-going rockfall and subsequent collapse of Baekrokdam wall rock are closely linked to the weathering of trachyte distributed in the western region of Baekrokdam. Samples of Hallasan trachyte showing different weathering grades had been collected and the polarizing microscopic observation, X-ray diffraction analysis and analysis for chemical weathering had been conducted. Formation of secondary minerals, especially clay minerals, by chemical weathering has not been identified, but the change of chemical weathering indices indicated that chemical weathering process had been proceeded to the degree for increasing and decreasing the contents of some chemical components. Changes in physical and mechanical rock properties due to weathering has also been examined. Artificial weathering test of freezing-thawing reveals that the process of crack initiation and propagation deteriorated the mechanical characteristics of Hallasan trachyte and $D_B$ = 1.5 or porosity = $20{\sim}21%$ would be the ultimate limiting value induced by the mechanical weathering processes.

Effects of Rock Weathering on the Degradation of Engineering Properties (암반풍화도에 따른 지질공학적 특성 저감효과)

  • Lee Chang-Sup;Cho Taechin
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.411-424
    • /
    • 2005
  • Weathering is defined as a process by which surface rock, once formed in the deep ground, is broken down and altered to keep the equilibrium with the ambient environment. In this study granitic rock samples of different weathering grades were collected in the field and the microscopic observation, X-ray diffraction analysis, electron microscopic observation, chemical analysis, and rock property tests were carried out. Formation of secondary minerals, especially clay minerals, by weathering was identified and the mechanism for the change of engineering properties such as rock strength degradation was analyzed. Tunnel model test, Failure behaviour, Shallow tunnel, Unsupproted tunnel length.

Weathering Sensitivity Characterization for Rock Slope, Considering Time Dependent Strength Changes (시간에 따른 강도변화를 고려한 암반사면의 풍화민감특성 분석)

  • Lee Jeong-Sang;Bae Seong-Ho;Yu Yeong-Il;Oh Joung-Bae;Lee Du-Hwa;Park Joon-Young
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.109-134
    • /
    • 2006
  • Rocks undergo weathering processes influenced by changing in pressure-temperature condition, atmosphere, underground water, and rainfall. The weathering processes change physical and chemical characteristics of the rocks. Once the rocks are weathered, the characteristics of them are changed and, because of the changing, several disadvantages such as rock slope failures and underground water spouts are can occur. Before we cut a large rock slope, therefore, we must analyze current weathering conditions of rocks and predict weathering processes in the future. Through the results of such analyses, we can judge reinforcement works. In order to comply with such requests, chemical weathering sensitivity analysis which was analyzed from chemical weathering velocities and other characteristics of rocks has been applied in several prior construction works in Korea. But, It is defective to use directly in engineering fields because it was developed for soils(not rocks), it has too mny factors must be considered and the relationships between the factors are not clear, and it is hard to explain the weathering processes in engineering time range. Besides above, because it has been used for isotropic rocks, this method is hard to apply to anisotropic rocks such as sedimentary rocks. Acceding to studies from morphologists (e.g. Oguchi et al., 1994; Sunamura, 1996; Norwick and Dexter, 2002), time dependent strength reduction influenced by weathering shows a negative exponential function form. Appling this relation, one can synthesize the factors which influence the weathering processes to the strength reduction, and get meaningful estimates in engineering viewpoint. We suggest this weathering sensitivity characterization method as a technique that can explain time dependent weathering sensitivity characteristics through strength changes and can directly applied the rock slope design.