• Title/Summary/Keyword: 풍속 분포

Search Result 316, Processing Time 0.03 seconds

Analysis of Wind Environments at Homi-Cape, Pohang (포항 호미곶의 풍환경 분석)

  • Kim Hyun-Goo;Choi Jae-Ou;Jung Woo-Sik
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.451-454
    • /
    • 2002
  • In the present paper, the practicability of Commentray on Wind Loads of Korean Standard Design Loads fur Buildings, which has been enacted in Minstry of Construction and Transportation in June 2000, is validated by using the meteorological data measured at Homi-Cape, Pohang. Assuming that the vertical wind profile follows the power-law in a quasi-steady state, wind profile exponents are calculated by seasons by using wind data as collected through four monitoring towers. According to the Commentray on Wind Loads, Pohang is classified with its exposure category being B and the wind profile exponent being 0.22, while it is identified that the average wind profile exponent as calculated in this study is 0.26. Also, in this paper, a cross-correlation method is suggested in order to identify any meteorological correlation between measurement sites quantitatively.

  • PDF

The Analysis of Ammonia Spatial Distribution of Ammonia at Paper Mill Using Passive Sampler (암모니아 Passive Sampler를 이용한 제지공장 내 암모니아 공간분포 측정)

  • 김학민;노태옥;이범진;김선태
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.342-343
    • /
    • 2000
  • 다양한 배출원을 통해 외부로 발산되는 악취유발물질이 생활환경에 미치는 영향을 객관적으로 조사하고 평가하기 위해서는 인간의 감각기관을 이용하는 관능측정법과 화학성분을 분석하는 기기분석법을 동시에 적용하는 것이 필요하다. 그러나 인간의 감각기관을 이용하여야 하는 관능측정법의 경우 판정인이 장시간에 걸쳐 악취현상을 평가할 수 없다는 한계를 갖고 있으며, 기기분석법의 경우도 측정방법의 특성상 장시간 동안 시료를 채취하기 어려운 문제점을 갖고있어 풍향 및 풍속 등 기상조건에 따라 순간적으로 감지되는 취기수준이 다른 악취현상을 명확하게 규명하는데 일정부분의 한계를 갖게된다. (중략)

  • PDF

The Prediction of the location and electric Power for Small Wind Powers in the H University Campus (대학교 캠퍼스 소형풍력발전기 설치 및 발전량 예측에 관한 연구)

  • Cho, Kwan Haeng;Yoon, JaeOck
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.127-132
    • /
    • 2012
  • The energy consumption in the world is growing rapidly. And the environmental issues of climate become a important task. The interest in renewable energy like wind and solar is increasing now. Especially, by reducing power transmission loss, a small wind power is getting attention at the residential areas and campus of university. In this study, we attempted to estimate and compare the wind energy density using wind data of AWS (Automatic Weather Station) of H University. In this case of a campus, the weibull distribution parameter C is 2.27, and K is 0.88. According to the data, the energy density of the small wind power is 12.7 W/m2. We did CFD(Computational Fluid Dynamics) simulations at H University campus by 7 wind directions(ENE, ESE, SE, NW, WNW, W, WSW). In the results, we suggest 4 small wind powers. The small wind power generating system can produce 4,514kWh annually.

Prediction of Wind Power Generation at Southwest Coast of Korea Considering Uncertainty of HeMOSU-1 Wind Speed Data (HeMOSU-1호 관측풍속의 불확실성을 고려한 서남해안의 풍력 발전량 예측)

  • Lee, Geenam;Kim, Donghyawn;Kwon, Osoon
    • New & Renewable Energy
    • /
    • v.10 no.2
    • /
    • pp.19-28
    • /
    • 2014
  • Wind power generation of 5 MW wind turbine was predicted by using wind measurement data from HeMOSU-1 which is at south west coast of Korea. Time histories of turbulent wind was generated from 10-min mean wind speed and then they were used as input to Bladed to estimated electric power. Those estimated powers are used in both polynominal regression and neural network training. They were compared with each other for daily production and yearly production. Effect of mean wind speed and turbulence intensity were quantitatively analyzed and discussed. This technique further can be used to assess lifetime power of wind turbine.

Characteristics Analysis of Domestic Wind Energy Resources (국내의 풍력자원 특성 분석)

  • Park, Kyung-Ho;Kim, Keon-Hoon;Chung, Hun-Saeng
    • Solar Energy
    • /
    • v.10 no.2
    • /
    • pp.3-9
    • /
    • 1990
  • The recent technology of Wind Energy Conversion System(WECS) in the world is well-developed and the feasibility of WECS is better than the past time. So, it is necessary to re-analyze the characteristics of wind energy in this country. This paper deals with the analysis of wind energy distribution in Korean Peninsula, Cheju and Ullung island. The assessment was performed based on the raw data collected 64 meteorological stations for the last 10 years. The wind energy characteristics were analyzed hourly, monthly, seasonally and annually. The Weibull distribution was assumed and two parameters in all areas were calculated and the wind energy potential distribution in Korea was obtained.

  • PDF

Uniformity of Temperature in Cold Storage Using CFD Simulation (CFD 시뮬레이션을 이용한 농산물 저온저장고내의 온도분포 균일화 연구)

  • Jeong, Hoon;Kwon, Jin-Kyung;Yun, Hong-Sun;Lee, Won-Ok;Kim, Young-Keun;Lee, Hyun-Dong
    • Food Science and Preservation
    • /
    • v.17 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • To maintain the storage quality of agricultural products, temperature uniformity during cold storage, which is affected by fan flow rate and product arrangement, is important. We simulated and validated a CFD (Computational Fluid Dynamics) model that can predict both airflow and temperature distribution in a cold storage environment. Computations were based on a commercial code (FLUENT 6.2) and two turbulence models. The standard k-$\varepsilon$ model and the Reynolds stress model (RSM) were chosen to improve the accuracy of CFD prediction. To obtain comparative data, the temperature distribution and velocity vector profiles were measured in a full-scale cold storage facility and in a 1/5 scale model. The agricultural products domain in cold storage was modeled as porous for economical computation. The RSM prediction showed good agreement with experimental data. In addition, temperature distribution was simulated in the cold storage rooms to estimate the uniformity of temperature distribution using the validated model.

A Synoptic Climatological Study on the Distribution of Winter Precipitation in South Korea (韓國의 冬季 降水 分布에 關한 綜觀氣候學的 硏究)

  • Park, Byong-Ik;Yoon, Suk-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.32 no.1
    • /
    • pp.31-46
    • /
    • 1997
  • The purposes of this paper are to classify the spatial distribution types of precipitation by making daily isohyetal maps based on the winter daily precipitation and to analyse both the distributional characteristics of precipitation during the winter in South Korea and the synoptic characteristics related to them. Also, the correspondence between the spatial distribution types of precipitation and the synoptic characteristics occuring among them is examined with regards to pressure patterns and then precipitation distribution types. In addition, the characteristics of the pressure fields and temperature fields in 850hPa, 700hPa, and 500hPa level were analysed to find out the difference between the Ullung-do type and the Ullung-do${\cdot}$Honam type, which have similar characteristics on the surface weather map. As a result, the Ullung-do area showed a high frequency of occurrence regardless of precipitation classes, the East Coast area revealed a higher frequency of occurrence in over the 5mm section, while the Honam area had high frequency of occurrence in the 1~5mm section. There are twelve distribution types of precipitation during the winter. These distribution types show clear changes according to the season. The difference in precipitation distribution between the Ullung-do type and the Ullung-do${\cdot}$Honam type has a close relationship with the aspect of the upper cold air advection rather than the direction and the speed of the wind.

  • PDF

Improving usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: III. Correction for Advection Effect on Determination of Daily Maximum Temperature Over Sloped Surfaces (기상청 동네예보의 영농활용도 증진을 위한 방안: III. 사면 일 최고기온 결정에 미치는 이류효과 보정)

  • Kim, Soo-Ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.297-303
    • /
    • 2014
  • The effect of solar irradiance has been used to estimate daily maximum temperature, which make it possible to reduce the error inherent to lapse-rate based elevation difference correction in mountainous terrain. Still, recent observations indicated that the effect of solar radiation would need correction for estimation of daily maximum temperature. It was attempted to examine what would cause the variability of solar irradiance effect in determination of daily maximum temperature under natural field conditions and to suggest improved methods for estimation of the temperature distribution over mountainous regions. Temperature at 1500 and the wind speed for 1100 to 1500 were obtained at 10 validation sites with various topographical features including slope and aspect within a mountainous $50km^2$ catchment for 2012-2013. Lapse-rate corrected temperature estimates on clear days were compared with these observations, which would represent the differential irradiance effect among sloped surfaces. Results indicated a negative correlation between the mean wind speed and the estimation error. A simple scheme was derived from relationship between wind speed and estimation error for daily temperature to correct the effect of solar radiation. This scheme was incorporated into an existing model to estimate daily maximum temperature based on the effect of solar radiation. At 10 validation sites on clear days, estimates of 1500 LST temperature with and without the correction scheme were compared. It was found that a substantial improvement was achieved when the correction scheme was applied in terms of bias correction as well as error size reduction at all sites.

Analysis of the efficiency of natural ventilation in a multi-span greenhouse using CFD simulation (CFD 시뮬레이션을 이용한 연동형 온실 내 자연환기의 효율성 분석)

  • Short, Ted H.
    • Journal of Bio-Environment Control
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 1999
  • Natural ventilation in a four and one-half span, double polyethylene commercial greenhouse was investigated with actual data collected at Quailcrest Farm near Wooster, Ohio. Moreover, a computational fluid dynamics (CFD) numerical technique, FLUENT V4.3, was used to predict natural ventilation rates, thermal conditions, and airflow distributions in the greenhouse. The collected climate data showed that the multi-span greenhouse was well ventilated by the natural ventilation system during the typical summer weather conditions. The maximum recorded air temperature difference between inside and outside the greenhouse was 3.5$^{\circ}C$ during the hottest (34.7$^{\circ}C$) recorded sunny day; the air temperatures in the greenhouse were very uniform with the maximum temperature difference between six widely dispersed locations being only 1.7$^{\circ}C$. The CFD models predicted that air exchange rates were as high as 0.9 volume per minute (A.C. .min$^{-1}$ ) with 2.5m.s$^{-1}$ winds from the west as designed.

  • PDF

Analysis of Temperature Influence Experiment on Green Spaces in Campus (캠퍼스 내 녹지공간의 온도분석 및 온도영향요인 규명 실험)

  • Kim, Jaekyoung;Kim, Wonhee;Kim, Eunil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.511-520
    • /
    • 2020
  • Owing to global warming, heat waves have become stronger in the summer, and research on improving the thermal environment of green spaces, such as urban parks, is being conducted. On the other hand, studies on improving the urban thermal environment, which is changing due to the greening pattern and the intensity of the wind, are still insufficient. This study analyzed the temperature of the green spaces on campus to understand the factors affecting the temperature changes. After investigating the covering condition and planting form of the site, factors, such as temperature, humidity, wind direction, wind speed, and illuminance, were measured. The most influential factors on the temperature distribution are evapotranspiration and wind - induced heat transfer. The other major factors affecting the temperature change were the type of cover, wind velocity/wind direction, type of planting, shade / solar irradiance. In the type of cover, the plant was classified as low temperature, and the asphalt pavement was classified as high temperature. In wind speed, instantaneous temperature was reduced by 1.2 ℃ in southern wind, 0.7 ℃ in the westerly wind, 0.4 ℃ in the north wind and 0.5 ℃ in the east wind when a wind of 3.5m/s or more was blown.