• Title/Summary/Keyword: 풍동실험

Search Result 434, Processing Time 0.025 seconds

Wind Load Analysis owing to the Computation Fluid Dynamics and Wind Tunnel Test of a Container Crane (컨테이너 크레인의 전산유동해석과 풍동실험에 의한 풍하중 분석)

  • Lee, Su-Hong;Han, Dong-Seop;Han, Geun-Jo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.3
    • /
    • pp.215-220
    • /
    • 2009
  • Container cranes are vulnerable structure to difficult weather conditions bemuse there is no shielding facility to protect them from strong wind. This study was carried out to analyze the effect of wind load on the structure of a container crane according to the change of the boom shape using wind tunnel test and computation fluid dynamics. And we provide a container crane designer with data which am be used in a wind resistance design of a container crane assuming that a wind load 75m/s wind velocity is applied in a container crane. In this study, we applied mean wind load conformed to 'Design Criteria of Wind Load' in 'Load Criteria of Building Structures' and an external fluid field was divided as interval of 10 degrees to analyze the effect according to a wind direction. In this conditions, we carried out the wind tunnel test and the computation fluid dynamic analysis and than we analyzed the wind load which was needed to design the container crane.

A Study on the Development and Performance Test of Supersonic Wind Tunnel for Education (교육용 초음속 풍동 개발 및 성능검증에 관한 연구)

  • Lee, Jin-Ho;Huh, Choul-Jun;Bae, Ki-Joon;Bae, Yung-Woo;Byun, Yung-Hwan;Lee, Jae-Woo;Chang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.129-137
    • /
    • 2004
  • A small size - low priced supersonic wind tunnel of which test section size is 30mm by 35.6mm and run time is 20sec is developed. This educational supersonic wind tunnel is an intermittent blowdown type with an exchangeable nozzle block. In this study, the proper sized and low priced commercial parts are used to reduce the total cost of supersonic wind tunnel. A nozzle design and small supersonic wind tunnel design process has been established, and it is confirmed that a given supersonic flow field has been obtained and proved by experiment.

The Experimental Analysis of the Effect of Wind Load on the Stability of a Container Crane (풍하중이 컨테이너 크레인 안정성에 미치는 영향의 실험적 해석)

  • Lee Seong-Wook;Shim Jae-Joon;Han Dong-Seup;Han Geun-Jo;Kim Tae-Hyung;Hwang Kyu-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.229-234
    • /
    • 2005
  • This study was carried out to analyze the effect of wind load on the stability of a 50ton container crane using wind tunnel test and provide a container crane designer with data which can be used in a wind resistance design of a container crane assuming that a wind load at 75m/s wind velocity is applied on a container crane. Data acquisition conditions for this experiment were established in accordance with the similarity. The scale of a container crane dimension, wind velocity and time were chosen as 1/200, 1/13.3 and 1/15. And this experiment was implemented in an Effect type atmospheric boundary-layer wind tunnel with $11.52m^2$ cross-section area. Each directional drag and overturning moment coefficients were investigated and uplift forces at each supporting point due to the wind load were analyzed.

  • PDF

Development of Magnus Effect Measurement Technique for Spinning Projectile (회전 발사체용 마그너스 효과 특정기법의 개발)

  • Oh, Se-Yoon;Kim, Sung-Cheol;Lee, Do-Kwan;Choi, Joon-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.79-86
    • /
    • 2007
  • The Magnus effect measurement apparatus was designed and built for spinning wind tunnel model which would simulate the rotation of projectiles. Prior to the high speed test, the ground functional test and the low speed test were carried out in the Agency for Defense Development's Low Speed Wind Tunnel(ADD-LSWT) at spin rates from about 6,000 to 10,000 rpm. Magnus force and moment were measured on the spinning projectile model at velocity of 100 m/s. It was shown that the Magnus force and moment were linear function of spin parameter. The test results were compared with Magnus test run on the same configuration in the Arnold Engineering Development Center's Propulsion Tunnel 4T(AEDC-4T).

Experimental Study on Aerodynamic Characteristics of Morphing Airfoil Configuration (모핑 에어포일 형상의 공력특성 실험연구)

  • Ko, Seung-Hee;Bae, Jae-Sung;Kim, Hark-Bong;Roh, Jin-Ho;Ahn, Seok-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.846-852
    • /
    • 2012
  • The present paper is the preliminary study of the development of a morphing aircraft wing and investigates experimently the aerodynamic characteristics of a base airfoil and a morphing airfoil. The wind tunnel tests are conducted for a base Clark-Y airfoil, an airfoil with a mechanical flap, and a morphing airfoil. Lifts, drags, and pitching moments are measured by using a three-axis load cell and they are calibrated by considering solid blockage and wake blockage. The wind tunnel tests are conducted for various air speeds, Reynolds' numbers, and angles of attack. The experimental results show that the aerodynamic characteristics of the morphing airfoil in lift-drag and lift-pitching moment are better than those of the airfoil with a mechanical flap.

Characteristics of Peak External Pressure Acting on the Roof and Wall of the Low-Rise Buildings with Gable Roofs (박공지붕형 저층건축물의 지붕 및 벽면에 작용하는 피크외압의 분포 특성)

  • Jo, Won Geun;Won, Jong Ho;Ha, Young Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.245-255
    • /
    • 2009
  • The low-rise buildings with gable roofs are commonly used in a number of industries. In order to study the characteristics of peak external pressure coefficient on low-rise buildings with gable roofs, wind-tunnel test have been carried out. Wind-induced pressures were measured simultaneously at many points on wind-pressure models, typical of simple low-rise buildings with gable roofs, which have seven different roof slope with constant width(D), height(H), and length(D). The pressure measurements were made in one kind of turbulent boundary layer, which simulated the natural winds over typical suburban terrains at a geometric scale of 1/150. The results indicate that peak external pressure coefficient on the roof and wall edges were increased. The results compared with wind standard of KBC-2005 and standards of various nations. The comparative resultant, experimental result appeared very similar at AIJ-2004. But the results were somewhat larger then wind standard of KBC-2005.

Experimental Investigations of Systematic Errors in Wind Tunnel Testing Using Design of Experiments (실험설계법 기반 풍동시험 시스템 오차 검출 실험연구)

  • Oh, Se-Yoon;Park, Seung-O;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.335-341
    • /
    • 2013
  • The variation of systematic bias errors in the wind tunnel testing has been studied. A Design of Experiments(DOE) approach to an experimental study of fuselage drag and stability characteristics of a helicopter configuration was applied. When forces and moments measured in one time block differ significantly from measurements made in another time block under assumption that sample observations can be expected to yield same results within permissible measuring errors. The practical implication of this paper is that the systematic error can not be assumed not to exist. The those error reduction could be achieved through the process of randomization, blocking, and replication of the data points.

A Study on the Measurement of Dynamic Stability Derivatives in the Rolling Motion of Aircraft (항공기의 롤운동 동안정미계수 측정에 관한 연구)

  • Cho, Hwan-Kee
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.41-46
    • /
    • 2013
  • This paper deals with an experimental technique for the measurement of dynamic stability derivatives in the roll motion of aircraft. Experimental aquisition method for aircraft's dynamic stability derivatives is conducted on the oscillation condition of aircraft model in the subsonic wind tunnel. The oscillation of aircraft model was forced by the oscillation apparatus. The forced oscillation technique is the method getting data from the internal balance inserted into the aircraft model during oscillating it. Dynamic stability derivatives of rolling motion were calculated by data reduction from the measurements of rolling moment, frequency and amplitude of aircraft model due to forced oscillation under wind conditions. Results of experiment is obtained similar one with those of roll dynamic stability derivatives measured in other institutes.

An Experimental Study of Test Section Velocity Calibration for Low-Speed Wind Tunnel (저속풍동 시험부 속도교정에 관한 실험적 연구)

  • Oh, Se-Yoon;Lee, Jong-Geon;Kim, Sung-Cheol;Kim, Sang-Ho;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.230-236
    • /
    • 2012
  • The purpose of this research is to determine the calibration constants of the wind speed measurement systems required to calculate the wind tunnel velocity in the test section. In the present work, the aerodynamic calibration tests of the test section were conducted in the Agency for Defense Development's Low-Speed Wind Tunnel. The test speed ranged from 10 to 100 m/s with a reference pitot-static pressure probe. The validity of the calibration results was evaluated by comparing them with the previous calibration constants. The calibration results show that fair to good agreement is obtained with resonable accuracy.