• Title/Summary/Keyword: 품질예측

Search Result 1,261, Processing Time 0.033 seconds

Development of Time-Cost Trade-Off Algorithm for JIT System of Prefabricated Girder Bridges (Nodular GIrder) (프리팹 교량 거더 (노듈러 거더)의 적시 시공을 위한 공기-비용 알고리즘 개발)

  • Kim, Dae-Young;Chung, Taewon;Kim, Rang-Gyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.3
    • /
    • pp.12-19
    • /
    • 2023
  • In the case of the construction industry, the relationship between process and cost should be appropriately distributed so that the finished product can be delivered at the minimum fee within the construction period. At that time, it should be considered the size of the bridge, the construction method, the environment and production capacity of the factory, and the transport distance. However, due to various reasons that occur during the construction period, problems such as construction delay, construction cost increase, and quality and reliability degradation occur. Therefore, a systematic and scientific construction technique and process management technology are needed to break away from the conventional method. The prefab(Pre-Fabrication) is a representative OSC (Off-Site Construction) method manufactured in a factory and constructed onsite. This study develops a resource and process plan optimization system for the process management of the Nodular girder, a prefab bridge girder. A simulation algorithm develops to automatically test various variables in the personnel equipment mobilization plan to derive the optimal value. And, the algorithm was applied to the Paju-Pocheon Expressway Construction (Section 3) Dohwa 4 Bridge under construction, and the results compare. Based on construction work standard product calculation, actual input manpower, equipment type, and quantity were applied to the Activity Card, and the amount of work by quantity counting, resource planning, and resource requirements was reflected. In the future, we plan to improve the accuracy of the program by applying forecasting techniques including various field data.

A Study on the Co-branding Determine FactorsBetween Franchise Restaurant and Hotel F&B Department in Korea (프랜차이즈 레스토랑과 국내 호텔 식음료부문 브랜드제휴 결정요인에 관한 연구)

  • Choo, Seung Woo;Lee, Sang Youn
    • The Korean Journal of Franchise Management
    • /
    • v.2 no.1
    • /
    • pp.134-151
    • /
    • 2011
  • The strategy for brand alliance is a new type of franchise to iron out the problems like the hotel restaurant's structural contradiction and decreasing profits caused by keen competition with external restaurants. This study is purposed to present the decisive factors for the brand alliance throughexamining the correlations between the brand restaurant designation standards and the expected effects from local low- and mid-priced hotel's brand alliance. The questionnaires were distributed to instructors and professors who have experience in teaching the food and beverage sections at college's hotel and tourism departments and 100 specialists at managerial level of a hotel's food and beverage parts.This survey was conducted for 20 days from December 2 to 22, 2004 and analyzed by independent t-test and canonical correlation analysis. The findings of this survey are as follows.Firstly, the service of the expected effect factors of the brand alliance was recognized relatively high by the specialists in hotel industry, while the sales effect factor of restaurant designation standards was recognized higher by the academic experts.The specialists of the hotel industry recognized the factors of menu and corporate culture higher than the academic experts. Secondly, the entire factors of the brand restaurant designation standards showed a correlation with the whole factors of the restaurant designation standards.In particular, the 'menu' factor presented the most influential to the expected effects of brand alliance.The factors of 'risk reduction' and 'synergy effect' exerted the strongest effect on the restaurant designation standards, which indicated the mutual correlation between the expected effect of brand alliance and the restaurant designation standards. Based on this study, the correlation between the expected effect of brand alliance and brand restaurant designation standards may play a primary role to choose a partner for the brand alliance, a decisive factor for the success.The execution of the brand alliance or the method to designate the alliance partner may vary from the hotel's desirable effects when the brand alliance is determined.In other words, the partner designation standards should be corresponding to the expected effects from the brand alliance between hotel and brand restaurant, and the academic and industrial experts' perceived differences in the expected effects of brand alliance and restaurant designation standards should be clarified to display the direction of decision-making and find the potential risks.

A study on the policy of de-identifying unstructured data for the medical data industry (의료 데이터 산업을 위한 비정형 데이터 비식별화 정책에 관한 연구)

  • Sun-Jin Lee;Tae-Rim Park;So-Hui Kim;Young-Eun Oh;Il-Gu Lee
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.85-97
    • /
    • 2022
  • With the development of big data technology, data is rapidly entering a hyperconnected intelligent society that accelerates innovative growth in all industries. The convergence industry, which holds and utilizes various high-quality data, is becoming a new growth engine, and big data is fused to various traditional industries. In particular, in the medical field, structured data such as electronic medical record data and unstructured medical data such as CT and MRI are used together to increase the accuracy of disease prediction and diagnosis. Currently, the importance and size of unstructured data are increasing day by day in the medical industry, but conventional data security technologies and policies are structured data-oriented, and considerations for the security and utilization of unstructured data are insufficient. In order for medical treatment using big data to be activated in the future, data diversity and security must be internalized and organically linked at the stage of data construction, distribution, and utilization. In this paper, the current status of domestic and foreign data security systems and technologies is analyzed. After that, it is proposed to add unstructured data-centered de-identification technology to the guidelines for unstructured data and technology application cases in the industry so that unstructured data can be actively used in the medical field, and to establish standards for judging personal information for unstructured data. Furthermore, an object feature-based identification ID that can be used for unstructured data without infringing on personal information is proposed.

Evaluation of bonding state of shotcrete lining using nondestructive testing methods - experimental analysis (비파괴 시험 기법을 이용한 숏크리트 배면 접착상태 평가에 관한 실험적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.71-83
    • /
    • 2009
  • Shotcrete is an important primary support for tunnelling in rock. The quality control of shotcrete is a core issue in the safe construction and maintenance of tunnels. Although shotcrete may be applied well initially onto excavated rock surfaces, it is affected by blasting, rock deformation and shrinkage and can debond from the excavated surface, causing problems such as corrosion, buckling, fracturing and the creation of internal voids. This study suggests an effective non-destructive evaluation method of the tunnel shotcrete bonding state applied onto hard rocks using the impact-echo (IE) method and ground penetration radar (GPR). To verify previous numerical simulation results, experimental study carried out. Generally, the bonding state of shotcrete can be classified into void, debonded, and fully bonded. In the laboratory, three different bonding conditions were modeled. The signals obtained from the experimental IE tests were analyzed at the time domain, frequency domain, and time-frequency domain (i.e., the Short- Time Fourier transform). For all cases in the analyses, the experimental test results were in good agreement with the previous numerical simulation results, verifying this approach. Both the numerical and experimental results suggest that the bonding state of shotcrete can be evaluated through changes in the resonance frequency and geometric damping ratio in a frequency domain analysis, and through changes in the contour shape and correlation coefficient in a time-frequency analysis: as the bonding state worsens in hard rock condition, the autospectral density increases, the geometric damping ratio decreases, and the contour shape in the time-frequency domain has a long tail parallel to the time axis. The correlation coefficient can be effectively applied for a quantitative evaluation of bonding state of tunnel shotcrete. Finally, the bonding state of shotcrete can be successfully evaluated based on the process suggested in this study.

Customer Voices in Telehealth: Constructing Positioning Maps from App Reviews (고객 리뷰를 통한 모바일 앱 서비스 포지셔닝 분석: 비대면 진료 앱을 중심으로)

  • Minjae Kim;Hong Joo Lee
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.4
    • /
    • pp.69-90
    • /
    • 2023
  • The purpose of this study is to evaluate the service attributes and consumer reactions of telemedicine apps in South Korea and visualize their differentiation by constructing positioning maps. We crawled 23,219 user reviews of 6 major telemedicine apps in Korea from the Google Play store. Topics were derived by BERTopic modeling, and sentiment scores for each topic were calculated through KoBERT sentiment analysis. As a result, five service characteristics in the application attribute category and three in the medical service category were derived. Based on this, a two-dimensional positioning map was constructed through principal component analysis. This study proposes an objective service evaluation method based on text mining, which has implications. In sum, this study combines empirical statistical methods and text mining techniques based on user review texts of telemedicine apps. It presents a system of service attribute elicitation, sentiment analysis, and product positioning. This can serve as an effective way to objectively diagnose the service quality and consumer responses of telemedicine applications.

Experimental study on structural integrity assessment of utility tunnels using coupled pulse-impact echo method (결합된 초음파-충격 반향 기법 기반의 일반 지하구 구조체의 건전도 평가에 관한 실험적 연구)

  • Jin Kim;Jeong-Uk Bang;Seungbo Shim;Gye-Chun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.479-493
    • /
    • 2023
  • The need for safety management has arisen due to the increasing number of years of operated underground structures, such as tunnels and utility tunnels, and accidents caused by those aging infrastructures. However, in the case of privately managed underground utility ducts, there is a lack of detailed guidelines for facility safety and maintenance, resulting in inadequate safety management. Furthermore, the absence of basic design information and the limited space for safety assessments make applying currently used non-destructive testing methods challenging. Therefore, this study suggests non-destructive inspection methods using ultrasonic and impact-echo techniques to assess the quality of underground structures. Thickness, presence of rebars, depth of rebars, and the presence and depth of internal defects are assessed to provide fundamental data for the safety assessment of box-type general underground structures. To validate the proposed methodology, different conditions of concrete specimens are designed and cured to simulate actual field conditions. Applying ultrasonic and impact signals and collecting data through multi-channel accelerometers determine the thickness of the simulated specimens, the depth of embedded rebar, and the extent of defects. The predicted results are well agreed upon compared with actual measurements. The proposed methodology is expected to contribute to developing safety diagnostic methods applicable to general underground structures in practical field conditions.

Coverage Analysis of VHF Aviation Communication Network for Initial UAM Operations Considering Real Terrain Environments (실제 지형 환경을 고려한 초기 UAM 운용을 위한 VHF 항공통신 커버리지 분석)

  • Seul-Ae Gwon;Seung-Kyu Han;Young-Ho Jung
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.102-108
    • /
    • 2024
  • In the initial stages of urban air mobility (UAM) operations, compliance with existing visual flight rules and instrument flight regulations for conventional human-crewed aircraft is crucial. Additionally, voice communication between the on board pilot and relevant UAM stakeholders, including vertiports, is essential. Consequently, very high frequency (VHF) aviation voice communication must be consistently provided throughout all phases of UAM operations. This paper presents the results of the VHF communication coverage analysis for the initial UAM demonstration areas, encompassing the Hangang River and Incheon Ara-Canal corridors, as well as potential vertiport candidate locations. By considering the influence of terrain and buildings through the utilization of a digital surface model (DSM), communication quality prediction results are obtained for the analysis areas. The three-dimensional coverage analysis results indicate that stable coverage can be achieved within altitude corridors ranging from 300 m to 600 m. However, there are shaded areas in the low-altitude vertiport regions due to the impact of high-rise buildings. Therefore, additional research to ensure stable coverage around vertiports in the lower altitude areas is required.

Optimal deployment of sonobuoy for unmanned aerial vehicles using reinforcement learning considering the target movement (표적의 이동을 고려한 강화학습 기반 무인항공기의 소노부이 최적 배치)

  • Geunyoung Bae;Juhwan Kang;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.214-224
    • /
    • 2024
  • Sonobuoys are disposable devices that utilize sound waves for information gathering, detecting engine noises, and capturing various acoustic characteristics. They play a crucial role in accurately detecting underwater targets, making them effective detection systems in anti-submarine warfare. Existing sonobuoy deployment methods in multistatic systems often rely on fixed patterns or heuristic-based rules, lacking efficiency in terms of the number of sonobuoys deployed and operational time due to the unpredictable mobility of the underwater targets. Thus, this paper proposes an optimal sonobuoy placement strategy for Unmanned Aerial Vehicles (UAVs) to overcome the limitations of conventional sonobuoy deployment methods. The proposed approach utilizes reinforcement learning in a simulation-based experimental environment that considers the movements of the underwater targets. The Unity ML-Agents framework is employed, and the Proximal Policy Optimization (PPO) algorithm is utilized for UAV learning in a virtual operational environment with real-time interactions. The reward function is designed to consider the number of sonobuoys deployed and the cost associated with sound sources and receivers, enabling effective learning. The proposed reinforcement learning-based deployment strategy compared to the conventional sonobuoy deployment methods in the same experimental environment demonstrates superior performance in terms of detection success rate, deployed sonobuoy count, and operational time.

A sea trial method of hull-mounted sonar using machine learning and numerical experiments (기계학습 및 수치실험을 활용한 선체고정형소나 해상 시운전 평가 방안)

  • Ho-seong Chang;Chang-hyun Youn;Hyung-in Ra;Kyung-won Lee;Dea-hwan Kim;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.293-304
    • /
    • 2024
  • In this paper, efficient and reliable methodologies for conducting sea trials to evaluate the performance of hull-mounted sonar systems is discussed. These systems undergo performance verification during ship construction via sea trials. However, the evaluation procedures often lack detailed consideration of variabilities in detection performance due to seabed topography, seasonal factors. To resolve this issue, temperature and salinity structure data were collected from 1967 to 2022 using ARGO floats and ocean observers data. The paper proposes an efficient and reliable sea trial method incorporating Bellhop modeling. Furthermore, a machine learning model applying a Physics-Informed Neural Networks was developed using the acquired data. This model predicts the sound speed profile at specific points within the sea trial area, reflecting seasonal elements of performance evaluation. In this study, we predicted the seasonal variations in sound speed structure during sea trial operations at a specific location within the trial area. We then proposed a strategy to account for the variability in detection performance caused by seasonal factors, using results from Bellhop modeling.

Optimization of Microwave-Assisted Process for Extraction of Effective Components from Mosla dinthera M. (마이크로파 추출공정에 의한 쥐깨풀 유용성분의 추출조건 최적화)

  • Lee Eun-Jin;Kwon Young-Ju;Noh Jung-Eun;Lee Jeong-Eun;Lee Sung-Ho;Kim Jae-Keun;Kim Kwang-Soo;Choi Yong-Hee;Kwon Joong-Ho
    • Food Science and Preservation
    • /
    • v.12 no.6
    • /
    • pp.617-623
    • /
    • 2005
  • Response surface methodology (RSM) was applied to microwave-assisted process (MAP) extraction for effective components from Mosla dianthera M. Microwave power (2,450 MHz, 0-160 W) and extraction time (1-5 min) were used as independent variables ($X_i$) for central composite design to yield 10 different extraction conditions. Optimum conditions were predicted for dependent variables of $75\%$ ethanol extracts, such as total yield($Y_1$), total phenolics($Y_2$), total flavonoids($Y_3$), and electron donation ability($Y_4$, EDA). Determination coefficients ($R^2$) of regression equations for dependent variables ranged from 0.8397 to 0.9801, and microwave power was observed to be more influential than extraction time in MAP. The maximal values of each dependent variable predicted at different extraction conditions of microwave power (W) and extraction time (min) were as follows; $6.76\%$ of total yield at 142.00 W and 4.36 min, 78.68 mg/g of total phenolics at 136.78 W and 4.40 min, 6.75 mg/g of total flavonoids at 159,69 W and 3.17 min, and $49.81\%$ of EDA at 133.87 W and 4.47 min, respectively. The superimposed contour maps for maximizing dependent variables illustrated the MAP conditions of 79 to 113 W in power and of 2.73 to 3.84 min in extraction time.