• Title/Summary/Keyword: 표준인장실험

Search Result 58, Processing Time 0.021 seconds

Tensile Testing of Groove Welded Joints Joining Thick-HSA800 Plates (HSA800 후판재의 맞댐용접부 인장강도 실험)

  • Lee, Cheol Ho;Kim, Dae Kyung;Han, Kyu Hong;Park, Chang Hee;Kim, Jin Ho;Lee, Seung Eun;Kim, Do Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.4
    • /
    • pp.431-440
    • /
    • 2013
  • In this study, a standard tensile welded-joint test was conducted to select a welding electrode suitable for recently developed HSA800 steel. Two welding electrodes were available at the time of this study; one was GMAW-based and the other FCAW-based. The tensile test specimens were fabricated by joining 60mm-thick HSA800 plates according to the AWS-prequalified groove welded joint details. Specimens which violate the standard root opening distance (ROD) were also included to see if poor construction tolerance could be accommodated. During fabrication, serious concerns about the welding efficiency of the GMAW-based product were raised by a certified welder. Both welding electrodes showed satisfactory and similar performance from welded joint strength perspective. But groove welded joints made by using the FCAW-based rod consistently showed more ductile and stable behavior. The AISC provisions for PJP joint strength were shown to be very conservative under direct tensile loading. Violating the AWS prequalified ROD by 100% apparently passed the strength criteria, but unusual crater-like fracture surface was observed.

Flexural Tensile Strength of CJP Groove Welded Joints Connecting Thick HSA800 Plates (HSA800 후판재의 완전용입 맞댐용접부 휨-인장강도 실험)

  • Lee, Cheol Ho;Kim, Dae Kyung;Han, Kyu Hong;Park, Chang Hee;Kim, Jin Ho;Lee, Seung Eun;Kim, Do Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.407-418
    • /
    • 2014
  • As a continuing work of previously conducted standard tension tests, full-scale flexural tests were conducted in this study to assess the structural performance the CJP groove welded joints connecting thick HSA800 plates. Two welding electrodes were available at the time of this experimental research; one was GMAW-based electrode A and the other FCAW-based electrode B. Three full-scale box-type beam specimens with single bevel- and V-groove CJP welded joints were fabricated from 60mm and 25mm thick HSA800 plates according to the AWS-prequalified groove welded joint details. In designing the specimens, all possible limit states like local and lateral torsional buckling were carefully controlled in order to induce flexural plastic yielding or eventual joint fracture. All the CJP joints made by both welding electrodes showed satisfactory performance and were able to transfer the tensile flange forces higher than that corresponding to the measured tensile strength of HSA800 flange plates. However, it should be noted that, during fabrication, serious concerns about the welding efficiency and workability of the GMAW-based electrode were raised by a certified welder. The fracture occurred at the unbeveled (or vertical) interface between the weldment and the base metal when the GMAW-based electrode was used in the single-bevel joint, implying the possibility of insufficient melting. Thus, the FCAW-based electrode B is again recommended as the choice of welding electrode for HSA800 plates. The limited test data of this study implies that the V-groove CJP joint should be used in favor of the single bevel CJP joint, if possible.

Elastic Plastic Finite Element Calculation of Standard Fracture Toughness Specimens (표준 파괴인성시험편에 대한 탄소성 유한요소해석)

  • 박용걸
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.113-118
    • /
    • 1994
  • The purpose of this study is elastic plastic finite element analysis for standard fracture toughness specimens. The principles of elastic-plastic fracture mechanics are shortly summarized and the special requirements for computational tools are derived. Possibilities to model the crack tip singularities are mentioned. The relevant fracture parameters like J-Integral and COD and their correlation are evaluated from elastic plastic finite element calculations of standard fracture toughnes specimens. The size and form of the plastic zone are shown. The comparion between experiment and caculation is discussed as well as the application of the limit load analysis.

  • PDF

Bond Strength Properties of Latex Modified Concrete (라텍스 개질 콘크리트의 부착강도 특성)

  • 윤경구;이주형;최상릉;김기헌
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.507-515
    • /
    • 2001
  • Significant improvements in bond strength between new and existing concrete can be achieved through the modification of the new concrete by latex. This study focuses on the investigation of bond strength of latex modified concrete. Pull-out bond test and uniaxial direct tensile bond test are adopted for evaluating the adhesion characteristics of latex modified concrete to conventional concrete substrate. The main experimental variables are test methods, latex-cement ratio, surface preparations and moisture levels. The results are as follows; The increase of latex-cement ratio substantially improves the adhesion between latex modified concrete and substrate. The effects of surface preparation at substrate into the bonding of latex modified concrete are quite different according to the conditions of surfaces. Thus, an adequate surface preparations are essential for good bond strength. Because the moisture level of the substrate may be critical to achieving bond, optimum moisture condition for a conventional concrete has evaluated in this study. The saturated condition of surface is the most appropriate moisture level among the considered, followed by dry condition and wet condition.

An Experimental Study on the Evaluation of Residual Tensile Load-carrying Capacity of Corroded Steel Plates of Temporary Structure (가시설 부식 강재의 잔존 인장 내하성능 평가에 관한 실험적 연구)

  • Kim, In-Tae;Chang, Hong-Ju;Cheung, Ji-Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.5
    • /
    • pp.399-409
    • /
    • 2010
  • Steel structures are threatened to reduce load-carrying capacity as the cross section is decreased by corrosion. However, there has been no method in definitely evaluating residual load-carrying capacity and the effect of corrosion to the load-carrying capacity of steel. This study evaluated tensile residual load-carrying capacity of corroded steel plates by using tensile tests of specimens, which were selected from the web of temporary structure's main beam. After the surface shapes were measured and tensile tests were examined, the rust of 21 corroded specimens was, first of all, removed using a chemical method. From the tensile test result, which of reference specimens that was picked off at the flange of the same main 13-mm-thick beam and corroded specimens were based, surface geometry and correlation with the reduction of corroded thickness and strain, yield strength or tensile strength was established as constant numbers. Effective thickness of corroded steel with irregular cross sections could be calculated using average residual thickness and standard deviation. The irregular cross sections could be the evaluated tensile strength that is equalized to non-corroded uniform steel's regardless of corrosion. Also, reasonable measuring intervals of residual thickness could be proposed by using this result to apply for executive work.

저항용접 시뮬레이션을 이용한 가공전극 적용 용접 특성 평가

  • Lee, Sang-Min;Choi, Du-Youl;Park, Yeong-Do
    • Proceedings of the KWS Conference
    • /
    • 2010.05a
    • /
    • pp.97-97
    • /
    • 2010
  • 최근 자동차에서 경량화의 방안으로써 높은 강성을 요구하는 고장력강 사용이 증대 되고 있다. 그러나 고장력강은 저항 점용접 시 일반 강에 비해 높은 전류를 요구하며 계면파단 및 expulsion 발생이 용이하기 때문에 가용 전류 구간이 좁은 특성을 가진다. 많은 연구자들이 hold time, tempering 등의 process를 이용하여 고장력강의 저항 점용접성을 개선하고자 하였으나 생산 공정라인에 적용하기는 어려운 실정이다. 본 연구에서는 용접 공정 변수의 변화에 따른 용접성과 전극 형상 변화을 통한 고장력강 점 용접성 향상에 대한 연구를 실시 하였다. 고장력강의 점 용접성 비교하기 위해 표준 전극(S1)과 인위적으로 가공한 전극(M1)을 사용하였으며, 실험에 사용된 판재는 두께 1.4mm의 DP590이며, 그 결과 표준전극(S1) 보다 가공 전극(M1)의 가용 전류 구간이 0.5kA 정도 넓은 것으로 확인 되었다. 두 전극을 사용한 점용접 시험편들의 인장전단강도를 비교 해보면 표준전극(S1)을 적용한 점용접 시 인장전단강도는 KS B 0850 기준에 만족하나 계면 파단이 발생 하였다. 가공 전극(M1)을 적용한 점용접 시 인장전단강도는 규격 기준에 만족하나 버튼 파단이 발생 하였다. 두 전극을 적용한 점용접부 형상 및 용접부 온도 분포에대해 저항점용접 시뮬레이션 프로그램(SORPAS)을 이용하여 실험 결과 값과 비교 분석하였고 파단모드의 변화에 대한 원인 분석을 도출 하였다.

  • PDF

Cleavage Dependent Indirect Tensile Strength of Pocheon Granite Based on Experiments and DEM Simulation (포천화강암의 결에 따른 간접인장강도 특성에 대한 실험 및 개별요소 수치해석)

  • Zhuang, Li;Diaz, Melvin B.;Jung, Sung Gyu;Kim, Kwang Yeom
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.316-326
    • /
    • 2016
  • The purpose of this study is to investigate the influence of cleavages on indirect tensile strength (ITS) of the granite. Brazilian disc tests and ring tests with three different hole sizes were performed. 2D DEM (Discrete Element Method) simulation was employed to further understand the failure process during the tests and the mechanism behind. Results show that ITS decreases across hardway, grain and rift cleavage. Measured average ITS from ring tests is about 2.5 ~ 6.4 times of those measured from Brazilian disc tests, and it decreases with increasing ratio of diameters of inner hole and specimen. Failure pattern in ring tests is influenced by both hole size and relative positions of cleavages parallel and perpendicular to the loading direction.

A Comparative Study on the Tensile Strength of Frozen Soil according to Test Methods (시험 방법에 따른 동결토의 인장강도)

  • Seo, Young-Kyo;Kang, Hyo-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.57-66
    • /
    • 2008
  • In this study, the blast-induced vibration effects on the structural stability of the adjacent tunnel and the stability were estimated with respect to the allowable peak particle velocity (PPV). The blasting distance from the tunnel satisfying the allowable PPV was estimated based on the analytical solutions, United States Bureau of Mines (USBM) suggestions, and the equations used in the subway in Seoul. The allowable blasting distance was estimated by using finite difference analysis (FDA) and the behavior of the concrete lining and rock bolts was examined and the stability of those was estimated during the blast. Research results show that the blast-induced vibration effects on the structural stability are negligible for the concrete lining but relatively large for the rock bolts.

Tensile Behaviour of Foamed Metal Matrix Composite Using Stochastic FE Model (통계적 유한요소모델을 이용한 발포된 금속기지 복합재료의 인장특성)

  • 전성식
    • Composites Research
    • /
    • v.17 no.2
    • /
    • pp.34-39
    • /
    • 2004
  • In this paper, a modified and representative unit cell model was employed to study the tensile behaviour of closed-cell metallic foams with varying spatial density distribution as well as material imperfections. The density variation was assumed to follow a statistical probability distribution of the Gaussian type. A multiple cell finite element model, utilising the modified unit cell, was developed. The model exhibits deformation patterns similar to those observed in tensile testing. The nominal stress-strain curve obtained from quasistatic tensile of the foam was compared with experimental findings and was found to be in good agreement in the scheme of maximum strength only if the appropriate density distribution and volume fraction of internal imperfections are taken into account. Moreover, maximum tensile strength of the aluminium foam was found to be more sensitive to the volume fraction of imperfection than standard deviation of the density.

Nonlinear Tensile Behavior Analysis of Torque-controlled Expansion Anchors Using Finite Element Analysis (유한요소해석을 활용한 비틀림 제어 확장앵커의 비선형 인장거동 특성 분석)

  • Bang, Jin Soo;Youn, Ilro;Kwon, Yangsu;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.4
    • /
    • pp.91-99
    • /
    • 2020
  • Post-installed anchors were widely used due to its workable benefits. Regarding the resistance performance of anchors, the critical edge distance is presented to minimize the impact of concrete splitting. In the case of actual anchors, however, it is difficult to obtain the ideal edge distance. The purpose of this study is to identify resistance performance and behavior characteristics that contain complex elements such as concrete crack occurring under tensile load. Tensile tests were conducted based on the standard method. Failure shape and the resistance characteristics that do not have the critical edge distance were derived by tensile load. Parametric analysis according to the boundary condition was performed to simulate the actual tensile behavior, through a nonlinear finite element model based on the specimen. Consequently therefore, verifying analysis results the resistance mechanism can be applied through boundary conditions.