• Title/Summary/Keyword: 표준시험조건에서의 성능

Search Result 65, Processing Time 0.029 seconds

Braking Force Test Evaluation Dynamometer Development of Vehicle (차량용 브레이크 제동력 평가 다이나모미터 개발)

  • Kwon, Byeong-Heon;Yoon, Pil-Hwon;Lee, Seon-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.56-65
    • /
    • 2019
  • Recently, automobiles have been developed for safety and environmental reasons. Particularly, awareness of automobile safety is changing significantly. As a result, safety systems developed by ADAS have emerged. However, the period of mass production through ADAS development and test evaluation is long. Therefore, in this paper, we develop a brake dynamometer to shorten the time required for ADAS development and test evaluation. In addition, the developed brake dynamometer satisfies the international standard JIS D-0210, and the user can evaluate the braking force by selecting test conditions and test method for each mode of ADAS. We use the ACC, LKAS, and AEB scenarios proposed in previous studies to verify the reliability of the developed brake dynamometer. The developed brake dynamometer was verified by comparing the test values and the calculated values using theoretical formulas of the proposed ADAS mode based on previous studies. In addition, it is expected that the performance evaluation of brake parts for each ADAS mode will be possible in an environment where the vehicle test of ADAS is not possible in the future.

Study on Direct Tensile Properties and Reliability Review of Steel Fiber Reinforced UHPC (강섬유 보강 UHPC의 직접인장 특성 및 신뢰성 검토에 관한 연구)

  • Park, Ji Woong;Lee, Gun Cheol;Koh, Kyung Taek;Ryu, Gum Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.125-132
    • /
    • 2018
  • In this study, a direct tensile test was planned to identify the tensile performance of UHPC, and the irregularity of cracks, which is a problem of the direct tensile test, was complemented through the introduction of notches at the center of a specimen. In this regard, a number of specimens divided by batch to reduce the deviation of direct tensile test values were fabricated to present reference data with respect to highly reliable direct tensile strength values. In addition, the mechanical properties and reliability of the specimens were examined under the curing conditions of the specified design strength of 120MPa for the steel fiber reinforced concrete with 1.5% fiber volume fraction, which is most suitable for the field application. As a result, the deviation of averages by batch between compressive strength and direct tensile strength did not show a large difference, and all cracks occurred within 20mm in the direct tensile test. At the 95% confidence interval of the direct tensile strength, the range was considerably small in the mean and the standard deviation, and there was no significant difference depending on the curing conditions. The results confirmed that a stable direct tensile test was performed, and highly reliable results were obtained through the fabrication of specimens by batch and test progress.

A Study on the Standard Test Method for Thermal Resistance of Military Textile Thermal Insulator for Winter Season (방한을 목적으로 하는 군용 섬유제품 충전재의 보온성 시험방법에 대한 표준화 연구)

  • Yeo, Yong-heon;Hong, Seong-don;Lee, Min-hee;Kim, Kyung-pil;Chung, Il-han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.492-500
    • /
    • 2018
  • The performance evaluation of cold weather clothing is mainly carried out with thermal resistance. However, the results of the revised test method regarding the same specimen were decreased compare to previous one. In addition, there were deviations of the results among the authorized testing institutes according to the different interpretation of the KS test method. This makes it a considerable difficulty to the quality assurance of combat supplies. The purpose of this study is to minimize the variation of the results before and after the revision by analyzing the cause of the decrease in the heat insulation rate according to the revised test method. For this purpose, the difference between the test conditions before and after the revision of KS is analyzed and the possible results are reviewed. In addition, we want to minimize the result deviation between testing laboratories by analyzing the cause of the result deviation between test laboratories according to arbitrary interpretation of the standard. Based on this, we propose a standardized test method to prevent the decrease of the heat insulation rate by checking the pre-revision test method and the condition with the least deviation.

Experimental Study on the Deck Wetting of a Container Ship in Irregular Head Waves (콘테이너선의 불규칙파중 갑판침수에 관한 실험적 고찰)

  • Sa-Young,Hong;Pan-Mook,Lee;Do-Sig,Gong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.31-39
    • /
    • 1990
  • Deck wetness phonomena has long been considered as one of the factors that degrade the performance of a ship in waves. In rough weather, the frequent shipping of water may give rise to the capsizing of the ship. Therefore an appropriate above water bow design is an improtant assert to a ship of which successful performance in rough weather is a prerequisite such as a warship. In this paper the experimental technique for estimation of deck wetness frequency is presented. The results of the model tests are compared with those of calculation using Ochi's formula. Finally the applicability of Ochi's formula is discussed.

  • PDF

Analysis of Heavy Metal Contaminated Soils Remediation Using Reactive Drains (반응성 배수재를 이용한 중금속 오염토양의 정화효율 분석)

  • Park, Jeongjun;Choi, Changho;Shin, Eunchul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.1
    • /
    • pp.29-38
    • /
    • 2013
  • This paper presents the analysis condition of remediation technique of contaminated fine-grained soil and physical properties of bio-degradable drain for analysis site applicability using bio-degradable drain method. As the result, two kinds of developed degradable drains (cylindricality shaped and harmonica shaped) are satisfied the Korean Industrial Standard. And the cylindricality shaped drain has an excellent discharge capacity than that of another one. By the results of laboratory test, the citric acid is chosen as the washing agent because it has low toxicity, so it is able to minimize harmful influence to environment. Furthermore the subject contaminants were selected as Cd, Cu and Pb. Based on the field pilot test results, the most remedial efficiency is the use of reactive material applied in bio-degradable drain method with the process of injecting the washing agent and extraction of contaminated fluid.

Development of a Multi - channel Detector for Capillary Electrophoresis System (모세관 전기영동 장치용 Photodiode Array 다채널 검출기의 개발에 관한 연구)

  • Hong, Seung Guk;Kim, Hai-Dong
    • Analytical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.96-104
    • /
    • 1998
  • A photodiode array multichannel detector system for capillary electrophoresis was developed. The photodiode array detector for capillary electrophoresis (CE-PDA) has 1024 photodetectors and can analyze sample by measuring UV/VIS absorption spectrum in 275~675 nm wavelength range. The CE-PDA instrument can get a spectrum in 30 ms during sample separation and can be programmed by a PC to control various experimental conditions required for sample analysis. The performance of the multichannel CE-PDA instrument was tested using L-ascorbic acid and alizarin yellow GG mixture. The reproducibility test of the CE-PDA system showed 5.6% RSD.

  • PDF

Thermal Stability Test Evaluation of Applying the Artificial-Crack of Water-Leakage Repair Materials Used in the Maintenance of Concrete Structure (콘크리트 구조물의 유지보수에 사용되는 누수보수재료의 인공 균열을 이용한 온도 안정성 시험평가)

  • Kim, Soo-Youn;Kim, Byoung-ll;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.322-329
    • /
    • 2016
  • This study is about the method to control the quality of material used to repair leakage and crack of concrete structure and suggests the "Temperature Stability Test Method" as a follow-up study. In the result of performance evaluation for 45 samples of 15 types in 5 series, the temperature stability test showed different material changes including rolling down, volume change, and color change as they are frozen and melt repeatedly in the somewhat extreme conditions at low($-20^{\circ}C$) and high($60^{\circ}C$) temperatures, where 13 samples (approx. 29%) and 32 samples (approx. 71%) showed leakage, respectively, in the permeability test to evaluate leakage. This result shows the enough importance of setting the quality control criteria of leakage repair material currently used to maintain concrete structures considering the temperature conditions, and proves the applicability of the Temperature Stability Test Method as a standard test method to ensure long-term durability of concrete structure.

Structural Stiffness Analysis on Doors having Pyramidal Truss Cores in an Urban Transit Vehicle (피라미드 트러스 심재를 채용한 도시철도차량 출입문의 구조강성평가)

  • Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.697-702
    • /
    • 2017
  • A preliminary study was carried out to investigate the feasibility of replacing honeycomb cores with pyramidal truss cores in the doors of urban transit railway vehicles. The doors in current operation are sandwich structures comprising a honeycomb core and reinforcements between two facesheets. The structural requirements of doors for urban transit vehicle are specified in the KRS and KRT and standards, according to which the deflections from three-point bending tests must be limited. To this end, two types of pyramidal truss cores with equivalent mass to a honeycomb core were designed. The structural stiffness of doors with pyramidal truss cores and honeycomb cores were numerically calculated via finite element analysis. The three-point bending models were constructed and simulated, and then the calculated deflections were compared with the requirements specified in the regulations. The results show that doors with pyramidal truss cores satisfied the stiffness requirements, although their deflections were 2.5% larger than that of the honeycomb cores. Therefore, the pyramidal truss cores could replace the aluminum honeycomb cores, and their multi-functional capability could be exploited.

Bond Behavior of Recycled Coarse Aggregate Concrete Deteriorated by Freezing and Thawing (동결융해를 받은 순환 굵은골재 콘크리트의 부착성능)

  • Choi, Ki-Sun;Lee, Min-Jung;Yun, Hyun-Do;Kang, Ki-Woong;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1097-1100
    • /
    • 2008
  • The purpose of this study to investigate the bond strength of recycled coarse aggregate concrete deteriorated by freezing and thawing. Concrete specimens with recycled coarse aggregate representing lower limit of the quality standard (water absorption : 3.0%, specific gravity : $2.5g.cm^3$) were manufactured and tested. The replacement ratio (0, 30, 60 and 100%) of recycled coarse aggregate and freezing-thawing cycles were considered in this test. From the test results, it was found that the bond strength of normal strength concrete is not affected by the replacement ratio of recycled coarse aggregate under freezing and thawing conditions. Also, the bond strength of the natural and recycled coarse aggregate concrete using AE admixtures was not decreased by frost action.

  • PDF

Fabrication and application of cell-based microfluidic chip for eye-irritation test of chemicals (화학 물질의 안자극 시험용 세포 기반 미세유체 칩의 제작 및 응용)

  • Cho, Sujin;Rhee, Seog Woo
    • Analytical Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.275-283
    • /
    • 2021
  • This study presents the development of cell-based microfluidic chips for the performance of acute eye irritation tests due to chemicals and examined some of their applications. Microfluidic chips were fabricated by photolithography and soft lithography, and they had three compartments with different areas for cell culture. Rabbit corneal epithelial cells were used for the eye irritation test. The death of cells cultured inside the chip was monitored at regular time intervals after treatment with an aqueous solution of chemicals, and the cell death rate constants were calculated based on the viability curve. The performance of the microfluidic chip was verified by examining the effects of cell-cell junctions, cell-substrate adhesion, and initial cell numbers compared to cell death rates. Eye irritation tests were performed at various concentrations of an aqueous solution of sodium dodecyl sulfate (SDS), a standard substance for the eye irritant test. The cells were exposed to the SDS aqueous solution for 300 s, and the resulting eye irritation was assessed by cell viability. Finally, the equation for calculating the toxicity score (TS) was derived based on the weighting factor for each compartment in the chip. The cell-based microfluidic chip developed in this study may be used for eye irritation tests from chemicals used in cosmetics and pharmaceuticals.