• 제목/요약/키워드: 표정특징추출

검색결과 105건 처리시간 0.017초

뇌파신호를 이용한 감정분류 연구 (Research on Classification of Human Emotions Using EEG Signal)

  • 무하마드 주바이르;김진술;윤장우
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권4호
    • /
    • pp.821-827
    • /
    • 2018
  • Affective Computing은 HCI (Human Computer Interaction) 및 건강 관리 분야에서 다양한 애플리케이션이 개발됨에 따라 최근 몇 년 동안 관심이 높아지고 있다. 이에 필수적으로 필요한 인간의 감정 인식에 대한 중요한 연구가 있었지만, 언어 및 표정과 비교하여 심전도 (ECG) 또는 뇌파계 (EEG) 신호와 같은 생리적 신호 분석에 따른 감정 분석에 대한 관심은 적었다. 본 논문에서는 이산 웨이블릿 변환을 이용한 EEG 기반 감정 인식 시스템을 제안하고 감정 관련 정보를 얻기 위해 다른 뇌파와 뇌 영역을 연구 하였으며, 웨이블릿 계수에 기초한 특징 세트가 웨이블릿 에너지 특징과 함께 추출되었다. 중복성을 최소화하고 피처 간의 관련성을 극대화하기 위해 mRMR 알고리즘이 피쳐 선택에 적용된다. 다중클래스 Support Vector Machine을 사용하여 4 가지 종류의 인간 감정을 크게 분류하였으며 공개적으로 이용 가능한 "DEAP"데이터베이스의 뇌파 기록이 실험에서 사용되었다. 제안 된 접근법은 기존의 알고리즘에 비해 향상된 성능을 보여준다.

감정예측모형의 성과개선을 위한 Support Vector Regression 응용 (Application of Support Vector Regression for Improving the Performance of the Emotion Prediction Model)

  • 김성진;유은정;정민규;김재경;안현철
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.185-202
    • /
    • 2012
  • 오늘날 정보사회에서는 정보에 대한 가치를 인식하고, 이를 위한 정보의 활용과 수집이 중요해지고 있다. 얼굴 표정은 그림 하나가 수천개의 단어를 표현할 수 있듯이 수천 개의 정보를 지니고 있다. 이에 주목하여 최근 얼굴 표정을 통해 사람의 감정을 판단하여 지능형 서비스를 제공하기 위한 시도가 MIT Media Lab을 필두로 활발하게 이루어지고 있다. 전통적으로 기존 연구에서는 인공신경망, 중회귀분석 등의 기법을 통해 사람의 감정을 판단하는 연구가 이루어져 왔다. 하지만 중회귀모형은 예측 정확도가 떨어지고, 인공신경망은 성능은 뛰어나지만 기법 자체가 지닌 과적합화 문제로 인해 한계를 지닌다. 본 연구는 사람들의 자극에 대한 반응으로서 나타나는 얼굴 표정을 통해 감정을 추론해내는 지능형 모형을 개발하는 것을 목표로 한다. 기존 얼굴 표정을 통한 지능형 감정판단모형을 개선하기 위하여, Support Vector Regression(이하 SVR) 기법을 적용하는 새로운 모형을 제시한다. SVR은 기존 Support Vector Machine이 가진 뛰어난 예측 능력을 바탕으로, 회귀문제 영역을 해결하기 위해 확장된 것이다. 본 연구의 제안 모형의 목적은 사람의 얼굴 표정으로부터 쾌/불쾌 수준 그리고 몰입도를 판단할 수 있도록 설계되는 것이다. 모형 구축을 위해 사람들에게 적절한 자극영상을 제공했을 때 나타나는 얼굴 반응들을 수집했고, 이를 기반으로 얼굴 특징점을 도출 및 보정하였다. 이후 전처리 과정을 통해 통계적 유의변수를 추출 후 학습용과 검증용 데이터로 구분하여 SVR 모형을 통해 학습시키고, 평가되도록 하였다. 다수의 일반인들을 대상으로 수집된 실제 데이터셋을 기반으로 제안모형을 적용해 본 결과, 매우 우수한 예측 정확도를 보임을 확인할 수 있었다. 아울러, 중회귀분석이나 인공신경망 기법과 비교했을 때에도 본 연구에서 제안한 SVR 모형이 쾌/불쾌 수준 및 몰입도 모두에서 더 우수한 예측성과를 보임을 확인할 수 있었다. 이는 얼굴 표정에 기반한 감정판단모형으로서 SVR이 상당히 효과적인 수단이 될 수 있다는 점을 알 수 있었다.

모바일 SMS용 캐릭터 애니메이션을 위한 감정 기반 제스처 스타일화 (Emotion-based Gesture Stylization For Animated SMS)

  • 변혜원;이정숙
    • 한국멀티미디어학회논문지
    • /
    • 제13권5호
    • /
    • pp.802-816
    • /
    • 2010
  • 새로운 텍스트 입력으로부터 제스처를 생성하는 것은 컴퓨터 게임, 가상현실 등의 응용분야에서 종종 요구되는 중요한 문제이다. 최근에는 유명 아나운서와 같은 특정인의 제스처를 모방하는 제스처 스타일화에 관한 관심이 증가하고 있다. 그러나 기쁨이나 슬픔과 같은 감정을 이용하여 제스처를 스타일화하려는 시도는 많지 않다. 또한 이전의 연구는 대부분 실시간 알고리즘에 초점을 맞추고 있지 않다. 본 논문에서는 SMS 문장을 캐릭터 얼굴 표정과 제스처 애니메이션으로 자동 변환하고 감정 요소를 이용하여 제스처를 스타일화하는 시스템을 제안한다. 이 시스템의 가장 큰 특징은 제스처에 희로애락의 감정을 결합하는 실시간 알고리즘을 제시하는데 있다. 모바일 단말기를 플랫폼으로 하기 때문에 서버와 단말기에 작업을 적절하게 분배하고 초당 20프레임 이상의 실시간 수행을 보장한다. 먼저, 디즈니 영상에서 감정을 표현하는 단어와 이에 해당하는 제스처를 추출하고 통계적으로 모델링 한 후, 감정과 제스처의 결합을 위하여 Laban의 움직임 이론을 도입한다. 제안된 시스템의 타당성과 기존 서비스와의 대체 적정도를 알아보기 위해서 사용자 반응을 조사 분석한다.

KOMPSAT-3 위성영상의 RPC 보정을 위한 국가 통합기준점 탐지 (Detection of the Unified Control Points for RPC Adjustment of KOMPSAT-3 Satellite Image)

  • 이효성;한동엽;서두천;박병욱;안기원
    • 대한원격탐사학회지
    • /
    • 제30권6호
    • /
    • pp.829-837
    • /
    • 2014
  • KOMPSAT-3는 0.7 m 공간해상도의 스테레오 흑백영상을 획득할 수 있으며, RPC를 제공하고 있다. 내 외부표정요소 오차를 포함하고 있는 제공 RPC로부터 지상좌표를 결정하기 위해서는 지상기준점을 이용한 RPC 조정이 필요하다. 우리나라에는 국토지리정보원에 의해 수천 개의 국가 통합기준점이 국토 전역에 걸쳐 설치되고 분포되어 있다. 따라서 통합기준점은 국토지리정보원의 국가기준점발급시스템에서 쉽게 검색되고 다운로드 받을 수 있다. 본 연구는 KOMPSAT-3 위성영상에서 UCP를 탐지하기 위해, 특징점 추출 방법과 거리 방향각 적용방법을 제안하였다. 그 결과, 거리 방향각 적용방법이 더 좋은 결과를 보였다. 이 방법으로 조정된 RPC는 UCP 한 점만 적용한 경우, GPS 지상 기준점을 이용하여 조정한 경우와 비교하였다. 그 결과, 평면위치 정확도는 제안 방법이 가장 우수하였다. 따라서 본 연구에서 제안한 UCP 탐지방법으로 RPC 보정을 위한 GPS 현장관측을 대체할 수 있을 것이다.

고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형 (The Audience Behavior-based Emotion Prediction Model for Personalized Service)

  • 유은정;안현철;김재경
    • 지능정보연구
    • /
    • 제19권2호
    • /
    • pp.73-85
    • /
    • 2013
  • 정보기술의 비약적 발전에 힘입어, 오늘날 기업들은 지금까지 축적한 고객 데이터를 기반으로 맞춤형 서비스를 제공하는 것에 많은 관심을 가지고 있다. 고객에게 소구하는 맞춤형 서비스를 효과적으로 제공하기 위해서는 우선 그 고객이 처한 상태나 상황을 정확하게 인지하는 것이 중요하다. 특히, 고객에게 서비스가 전달되는 이른바 진실의 순간에 해당 고객의 감정 상태를 정확히 인지할 수 있다면, 기업은 더 양질의 맞춤형 서비스를 제공할 수 있을 것이다. 이와 관련하여 사람의 얼굴과 행동을 이용하여 사람의 감정을 판단하고 개인화 서비스를 제공하기 위한 연구가 활발하게 이루어지고 있다. 얼굴 표정을 통해 사람의 감정을 판단하는 연구는 좀 더 미세하고 확실한 변화를 통해 정확하게 감정을 판단할 수 있지만, 장비와 환경의 제약으로 실제 환경에서 다수의 관객을 대상으로 사용하기에는 다소 어려움이 있다. 이에 본 연구에서는 Plutchik의 감정 분류 체계를 기반으로 사람들의 행동을 통해 감정을 추론해내는 모형을 개발하는 것을 목표로 한다. 본 연구는 콘텐츠에 의해 유발된 사람들의 감정적인 변화를 사람들의 행동 변화를 통해 판단하고 예측하는 모형을 개발하고, 4가지 감정 별 행동 특징을 추출하여 각 감정에 따라 최적화된 예측 모형을 구축하는 것을 목표로 한다. 모형 구축을 위해 사람들에게 적절한 감정 자극영상을 제공하고 그 신체 반응을 수집하였으며, 사람들의 신체 영역을 나누었다. 특히, 모션캡쳐 분야에서 널리 쓰이는 차영상 기법을 적용하여 사람들의 제스쳐를 추출 및 보정하였다. 이후 전처리 과정을 통해 데이터의 타임프레임 셋을 20, 30, 40 프레임의 3가지로 설정하고, 데이터를 학습용, 테스트용, 검증용으로 구분하여 인공신경망 모형을 통해 학습시키고 성과를 평가하였다. 다수의 일반인들을 대상으로 수집된 데이터를 이용하여 제안 모형을 구축하고 평가한 결과, 프레임셋에 따라 예측 성과가 변화함을 알 수 있었다. 감정 별 최적 예측 성과를 보이는 프레임을 확인할 수 있었는데, 이는 감정에 따라 감정의 표출 시간이 다르기 때문인 것으로 판단된다. 이는 행동에 기반한 제안된 감정예측모형이 감정에 따라 효과적으로 감정을 예측할 수 있으며, 실제 서비스 환경에서 사용할 수 있는 효과적인 알고리즘이 될 수 있을 것으로 기대할 수 있다.