Modeling and simulation(M&S) method are used to quantify the weapon effectiveness. The weapon effectiveness of artillery shells was also partially studied, but there was a lack of research on the effects of the choice of charge. Therefore, this paper presents an artillery shell's EFD(Expected Fractional Damage) calculation model based on the charge and identifies differences in the weapon effectiveness of 3D building targets according to the selection of the charge. First, the input data of the calculation model was collected and a required number of shoots was calculated to achieve the desired effects using the proposed model. Finally, a paired sample t-test was conducted to verify the proposed model.
This study attempts to empirically investigate the respondents' preference uncertainty involved in stating their willingness to pay (WTP). In the contingent valuation (CV) survey, we employed two approaches using two split samples. The respondents of one sample were given the opportunity to express intensity of preference through polychotomous choice (PC) WTP question. Those of the other sample were given a follow-up question of confidence measure (0~100%). By incorporating the two elicited degrees of preference uncertainty into examining the WTP responses, we take a comparison of the two approaches in terms of the goodness-of-fit of the examination and the efficiency of the mean WTP estimates. In comparing the DC model with the PC models, the DC model provides more efficient estimates. Moreover, the conventional DC model give some gains in terms of the goodness-of-fit and efficiency in comparing with the PC model most similar to this model. In this specific study, incorporating the preference uncertainty in DC model results greater estimates than conventional DC model without loss of goodness-of-fit and efficiency. This implies that the consideration of preference uncertainty on DC model could correct underestimating. We conclude that DC model provides a better estimate of WTP and preference uncertainty could be a critical information on the DC-CV estimation.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.304-304
/
2018
이변량 빈도해석은 일반적으로 고정지속기간 강우량에 대해 빈도해석하는 단변량 빈도해석에 비해 지속기간을 확률변수로 이용하여 강우량과 동시에 확률변수로 사용할 수 있다는 장점이 있다. 하지만 확률분포형의 차원이 증가하기 때문에 기존 단변량 빈도해석에서 요구되던 표본크기보다 더 많은 표본이 필요하다. 우리나라 강우관측소의 경우 오래된 관측소의 경우에도 기록년수가 60년을 넘지 않아 연최대계열로 확률표본을 작성할 경우 이변량 빈도해석을 수행하기에 부족할 수 있다. 따라서 본 연구에서는 Peaks Over Threshold (POT) 방법을 이용하여 적정 확률표본을 선택하는 연구를 진행하였다. 서울 기상청 지점의 강우자료로부터 최소무강우시간을 이용하여 모든 강우사상을 추출하였으며 각 강우사상의 강우량과 지속기간이 확률변수로 사용되었다. 기존에 알려진 POT 방법들과 Anderson-Darling 적합도 검정을 이용한 절단값 산정방법등을 적용하여 확률표본 개수의 변화에 따른 주변분포형의 적합도 검정과 이변량 확률모형의 적합성을 살펴보았다.
Coefficients of determination in logistic regression analysis are defined as various statistics, and their values are relatively smaller than those for linear regression model. These coefficients of determination are not generally used to evaluate and diagnose logistic regression model. Liao and McGee (2003) proposed two adjusted coefficients of determination which are robust at the addition of inappropriate predictors and the variation of sample size. In this work, these adjusted coefficients of determination are applied to variable selection method for logistic regression model and compared with results of other methods such as the forward selection, backward elimination, stepwise selection, and AIC statistic.
Journal of the Korean Data and Information Science Society
/
v.22
no.6
/
pp.1017-1028
/
2011
When it is not easy to decide the credit scoring for some loan applicants, credit evaluation is postponded and reserve to ask a specialist for further evaluation of undecided applicants. This undecided inference is one of problems that happen to most statistical models including the biostatistics and sportal statistics as well as credit evaluation area. In this work, the undecided inference is regarded as a missing data mechanism under the assumption of MNAR, and use the bivariate probit model which is one of sample selection models. Two undecided inference methods are proposed: one is to make use of characteristic variables to represent the state for decided applicants, and the other is that more accurate and additional informations are collected and apply these new variables. With an illustrated example, misclassification error rates for undecided and overall applicants are obtainded and compared according to various characteristic variables, undecided intervals, and thresholds. It is found that misclassification error rates could be reduced when the undecided interval is increased and more accurate information is put to model, since more accurate situation of decided applications are reflected in the bivariate probit model.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.10
/
pp.76-91
/
2019
There have been many studies to examine the patterns in innovations reflecting industry-specific characteristics from an evolutionary economics perspective. The purpose of this study is to identify industry-specific differences in product innovation patterns and determinants of innovation performance. For this, Korean manufacturing is classified into high-tech industries and low-tech industries according to technology intensity. It is also pointed out that existing research does not reflect the decision-making process of firms' R&D implementations. In order to solve this problem, this study presents a Heckman sample selection model and a double-hurdle model as alternatives, and analyzes data from 1,637 firms in the 2014 Survey on Technology of SMEs. As a result, it was confirmed that the determinants and patterns of manufacturing in small and medium-size enterprise (SME) product innovation are significantly different between high-tech and low-tech industries. Also, through an extended empirical model, we found that there exist a sample selection bias and a hurdle-like threshold in the decision-making process. In this study, the industry-specific features and patterns of product innovation are examined from a multi-sided perspective, and it is meaningful that the decision-making process for manufacturing SMEs' R&D performance can be better understood.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.4-4
/
2017
수문자료의 빈도해석은 자료의 독립성(independence)와 정상성(stationarity)를 가정하여 이뤄진다. 그러나 관측 수문자료에서 비정상성 현상이 발생하고 있다는 사실이 관측되면서 수문자료에 대한 비정상성 빈도해석에 대한 필요성도 커지고 있다. 본 연구의 목적은 수문자료의 빈도해석에서 가장 널리 사용되고 있는 Gumbel 및 GEV 분포에 대한 비정상성 빈도해석 모형을 개발하는 것으로, 이를 위해 비정상성 Gumbel과 GEV 모형의 매개변수를 시간에 따라 변하는 형태로 정의하였다. 비정상성 Gumbel 및 GEV 모형의 정확도를 알아보기 위해 비정상성 모형과정상성 모형을 이용하여 Monte Carlo 모의실험을 수행하였다. 모의실험은 다양한 조건의 재현기간, 표본크기, 매개변수 조건을 고려하여 수행되었다. 그 결과 비정상성 모형의 오차는 비교적 표본크기가 클 때 가장 작은 것으로 나타났다. 또한 복잡한 매개변수의 조합을 가지는 비정상성 모형은 모두 동일한 경향성을 가질 때 가장 작은 오차를 보이는 것으로 나타났다. 비정상성 GEV 모형의 경우는 확률수문량 산정에 음(-)의 형상 매개변수가 큰 영향을 끼치는 것으로 나타났다. 또한 본 연구에서는 비정상성 조건에서 다양하게 존재하는 비정상성 모형 중 어떠한 모형이 주어진 자료에 대해 가장 적절한 모형인지 결정하기 위해 모의실험을 수행하였다. 널리 적용되고 있는 AIC, BIC, likelihood ratio test에 대해 정상성 및 비정상성 Gumbel 모형을 이용하여 모의실험을 수행한 결과, AIC가 비정상성 모형 중 적정 모형 선택에 가장 효과적인 것으로 나타났다. 개발된 비정상성 Gumbel 및 GEV 모형의 적용성을 알아보기 위해 우리나라 연최대강우 자료에 적용한 결과, 위치 매개변수에 시간항을 고려하는 Gumbel 모형이 최적모형으로 가장 많이 선택되는 것으로 나타났다. 따라서 현재 우리나라의 연최대강우자료 중 경향성이 나타나는 자료에 대해서는 위치 매개변수가 시간에 따라 변하는 특성이 가장 많이 나타나고 있는 것으로 판단된다.
High dimensional data are frequently encountered in various fields where the number of variables is greater than the number of samples. It is usually necessary to select variables to estimate regression coefficients and avoid overfitting in high dimensional data. A penalized regression model simultaneously obtains variable selection and estimation of coefficients which makes them frequently used for high dimensional data. However, the penalized regression model also needs to select the optimal model by choosing a tuning parameter based on the model selection criterion. This study deals with the bias effect of LASSO regression for model selection criteria. We numerically describes the bias effect to the model selection criteria and apply the proposed correction to the identification of biomarkers for lung cancer based on gene expression data.
The purpose of this study is estimating the value of recreation of the eighteen national parks in Korea. A conditional logit model and a nested logit model have been estimated for the purpose. The data used for the study have been collected via a national level off-site survey. In addition, the annual aggregate data on the number of visitors to each park have been combined with the survey data to derive more reliable estimates. The paper finds that there are substantial differences in preferences for mountain and marine national parks. Not only the value of each park but also the values of the main characteristics of the parks are estimated.
The outlook for Korea's consumer price inflation rate has a profound impact not only on the Bank of Korea's operation of the inflation target system but also on the overall economy, including the bond market and private consumption and investment. This study presents the prediction results of consumer price inflation in Korea for the next three years. To this end, first, model selection is performed based on the out-of-sample predictive power of autoregressive distributed lag (ADL) models, AR models, small-scale vector autoregressive (VAR) models, and large-scale VAR models. Since there are many potential predictors of inflation, a Bayesian variable selection technique was introduced for 12 macro variables, and a precise tuning process was performed to improve predictive power. In the case of the VAR model, the Minnesota prior distribution was applied to solve the dimensional curse problem. Looking at the results of long-term and short-term out-of-sample predictions for the last five years, the ADL model was generally superior to other competing models in both point and distribution prediction. As a result of forecasting through the combination of predictions from the above models, the inflation rate is expected to maintain the current level of around 2% until the second half of 2022, and is expected to drop to around 1% from the first half of 2023.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.