Nonstationary Frequency Analysis for Annual Maximum Data

  • 김수영 (연세대학교 산학협력단 공학계열)
  • Published : 2017.05.24

Abstract

수문자료의 빈도해석은 자료의 독립성(independence)와 정상성(stationarity)를 가정하여 이뤄진다. 그러나 관측 수문자료에서 비정상성 현상이 발생하고 있다는 사실이 관측되면서 수문자료에 대한 비정상성 빈도해석에 대한 필요성도 커지고 있다. 본 연구의 목적은 수문자료의 빈도해석에서 가장 널리 사용되고 있는 Gumbel 및 GEV 분포에 대한 비정상성 빈도해석 모형을 개발하는 것으로, 이를 위해 비정상성 Gumbel과 GEV 모형의 매개변수를 시간에 따라 변하는 형태로 정의하였다. 비정상성 Gumbel 및 GEV 모형의 정확도를 알아보기 위해 비정상성 모형과정상성 모형을 이용하여 Monte Carlo 모의실험을 수행하였다. 모의실험은 다양한 조건의 재현기간, 표본크기, 매개변수 조건을 고려하여 수행되었다. 그 결과 비정상성 모형의 오차는 비교적 표본크기가 클 때 가장 작은 것으로 나타났다. 또한 복잡한 매개변수의 조합을 가지는 비정상성 모형은 모두 동일한 경향성을 가질 때 가장 작은 오차를 보이는 것으로 나타났다. 비정상성 GEV 모형의 경우는 확률수문량 산정에 음(-)의 형상 매개변수가 큰 영향을 끼치는 것으로 나타났다. 또한 본 연구에서는 비정상성 조건에서 다양하게 존재하는 비정상성 모형 중 어떠한 모형이 주어진 자료에 대해 가장 적절한 모형인지 결정하기 위해 모의실험을 수행하였다. 널리 적용되고 있는 AIC, BIC, likelihood ratio test에 대해 정상성 및 비정상성 Gumbel 모형을 이용하여 모의실험을 수행한 결과, AIC가 비정상성 모형 중 적정 모형 선택에 가장 효과적인 것으로 나타났다. 개발된 비정상성 Gumbel 및 GEV 모형의 적용성을 알아보기 위해 우리나라 연최대강우 자료에 적용한 결과, 위치 매개변수에 시간항을 고려하는 Gumbel 모형이 최적모형으로 가장 많이 선택되는 것으로 나타났다. 따라서 현재 우리나라의 연최대강우자료 중 경향성이 나타나는 자료에 대해서는 위치 매개변수가 시간에 따라 변하는 특성이 가장 많이 나타나고 있는 것으로 판단된다.

Keywords