• Title/Summary/Keyword: 표면 접착강도

Search Result 288, Processing Time 0.024 seconds

Effect of $Al_2O_3$ Sandblasting and Silicoating on Bond Strength of a Resin Cement to Titanium Implant ($Al_2O_3$ sandblasting과 Silicoating이 titanium과 레진시멘트의 접착강도에 미치는 영향)

  • Choi, Byung-Hwan;Ha, Jung-Yun
    • Journal of Technologic Dentistry
    • /
    • v.34 no.2
    • /
    • pp.67-73
    • /
    • 2012
  • 연구 목적: 임플란트의 하부구조를 상부 구조와 연결하는 레진시멘트의 접착강도를 높이기 위한 기계적 화학적인 표면처리 방법들이 연구 되고 있다. 이 연구에서 다양한 크기의 $Al_2O_3$ sandblasting과 Silano Pen으로 표면처리한 티타늄과 레진 시멘트의 접착강도를 알아보고자 한다. 연구 방법: 12개의 티타늄(Ti-6A1-4V)시편을 디스크 형태로 제작하여 자가중합 수지에 매립하였다. 이들을 각각 6개의 군으로 나누어 $50{\mu}m$, $90{\mu}m$, $110{\mu}m$ 등 3가지 크기의 $Al_2O_3$로 sandblasting 하는 조건과 $Al_2O_3$로 sandblasting한 후 Silano Pen(Bredent, bredent GmbH &Co.KG, Senden, Germany)을 사용한 군으로 나누었다. 표면처리 한 티타늄 표면에 레진시멘트(Duolink dual syringe, Bisco, USA)으로 접착하였다. 그 후 증류수($37^{\circ}C$)에 24시간 보관 후 접착강도 실험을 시행하였고, SEM을 사용하여 표면처리 한 표면과 접착강도 실험 후 파절양상을 관찰하였다. 결과: 통계학적 분석에 따르면 Silano Pen을 사용하여 표면처리한 군들의 접착강도가 높았다(P<0.05). 결론: Silano Pen을 사용하는 것이 티타늄과 레진시멘트의 접착강도를 증가 시킨다.

EFFECT OF DENTIN SURFACE WETNESS ON TENSILE BOND STRENGTH OF SELF ADHESIVE RESIN CEMENTS (상아질 표면 젖음성이 수종 자가접착레진시멘트의 인장접착강도에 미치는 영향)

  • Yoon, Sung-Young;Park, Se-Hee;Kim, Jin-Woo;Cho, Kyung-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.2
    • /
    • pp.113-119
    • /
    • 2009
  • The purpose of this study was to compare the tensile bond strength of several self-adhesive resin cements bonded to dentin surfaces with different wet conditions. Three self-adhesive resin cements: Rely-X Unicem (3M ESPE, St. Paul, MN. USA). Embrace Wetbond (Pulpdent. Oakland. MA. USA). Maxcem (Kerr. Orange. CA. USA) were used. Extracted sixty human molars were used. Each self-adhesive resin cement was adhered to the dentin specimens (two rectangular sticks from each molar) in different wet conditions. Tensile bond strength were measured using universal testing machine (EZ Test. Shimadzu corporation. Kyoto. Japan) at a crosshead speed of 1.0mm/min. After the testing. bonding failures of specimens were observed by Operative microscope (OPMI pro, Carl Zeiss. Oberkochen, Germany). T-test was used to evaluate the effect of dentin surface wetness. One-way ANOVA test was used to evaluate the tensile bond strength of self-adhesive resin cements in the same condition. Scheffe's test was used for statistical analyzing at the 95% level of confidence. The result showed that wetness of dentin surface didn't affect tensile bond strength of self-adhesive resin cements and Maxcem showed the lowest tensile bond strength.

Evaluation of Adhesion Property of Epoxy Adhesive with Different Surface Roughness of GFRC (유리섬유강화 복합재료의 표면거칠기에 따른 에폭시 접착제의 접착강도 평가)

  • Kim, Jong-Hyun;Shin, Pyeong-Su;Lee, Sang-Il;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2020
  • Adhesion property of epoxy adhesive was evaluated with different surface roughness of glass fiber reinforced composite (GFRC) and optimized condition of surface roughness was confirmed. Different sizes of alumina (Al2O3) particles were blasted to GFRC to control surface roughness of GFRC using sand blasting method. The surface roughness was measured and quantified via surface roughness tester. Contact angle was measured using four types of different solvents. Surface energies and work of adhesion between epoxy adhesive and GFRCs were calculated with different surface roughness of GFRC. Adhesion property between epoxy adhesive and GFRCs was evaluated using single lap shear test and adhesion property increased with surface roughness of GFRC. The fracture surface of GFRCs was observed to evaluate adhesion property. Finally, the optimized roughness condition of GFRCs was confirmed.

Adhesion Strength of Amorphous Polymer Interfaces by Solvent Welding (Solvent 용접에 의한 무정형 고분자 계면의 접착강도 변화에 관한 연구)

  • 정연호;강두환;강호종
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • Autoadhesion strength of PS/PS Interfaces in solvent welding was determined as a function of processing conditions by butt joint test. It was verified that the chain mobility and surface roughness at PS/PS interface were enhanced by the applied solvent having a similar solubility parameter as PS and resulted in the dramatic improvement of autoadhesion strength at PS/PS interface. It was found that the mechanism of solvent welding is dependent upon the chain mobility due to the diffusion of solvent to PS interface and the contact area at interface. When the welding temperature is lower than the boiling point of applied solvent, the effect of chain mobility on autoadhesion strength was dominated, while contact area took more important role when welding temperature is above the boiling point of solvent. Autoadhesion strength increased with increasing contact time and contact temperature but :he effect of solvent on autoadhesion strength became smaller.

  • PDF

Shear bond strength between gold alloy and orthodontic metal bracket using light emitting diode curing light (Light emitting diode를 이용한 광중합 시 금합금과 교정용 금속 브라켓의 전단접착강도)

  • Jung, Min-Ho;Chung, Shin-Hye;Shon, Won-Jun
    • The korean journal of orthodontics
    • /
    • v.40 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • Objective: The need to bond orthodontic brackets onto various alloys has increased because of the increasing demand for adult orthodontic treatment. This study tried to evaluate the shear bond strength between gold alloy and metal bracket using light emitting diode (LED) light curing after metal primer and silicoating surface conditioning. Methods: Half of the type III gold alloy plates were treated with sandblasting with aluminum oxide and metal primer containing 4-META. the other half were treated with silica and silane. Metal brackets were bonded with Transbond XT light curing adhesive on these plates and shear bond strength were evaluated 1 hour, 6 hours, and 24 hours later. The differences of shear bond strength between groups were evaluated with two-way ANOVA. Results: The results showed higher bond strength in the silicoating group and a tendency of bond strength increase over time. Conclusions: When using LED curing lights for metal bracket bonding to alloy surfaces, long curing time and silicoating can produce a reliable bonding strength.

Application of Laser Surface Treatment Technique for Adhesive Bonding of Carbon Fiber Reinforced Composites (탄소복합재 접착공정을 위한 CFRP의 레이저 표면처리 기법의 적용)

  • Hwang, Mun-Young;Kang, Lae-Hyong;Huh, Mongyoung
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.371-376
    • /
    • 2020
  • The adhesive strength can be improved through surface treatment. The most common method is to improve physical bonding by varying the surface conditions. This study presents the effect of laser surface treatment on the adhesive strength of CFRP. The surface roughness was patterned using a 1064 nm laser. The effects of the number of laser shots and the direction and length of the pattern on the adhesion of the CFRP/CFRP single joint were investigated through tensile tests. Tests according to ASTM D5868 were performed, and the bonding mechanism was determined by analyzing the damaged surface after a fracture. The optimized number of the laser shots and the optimized depth of the roughness should be required to increase the bonding strength on the CFRP surface. When considering the shear stress in the tensile direction, the roughness pattern in the direction of 45° that increases the length of the fracture path in the adhesive layer resulted in an increase of the adhesive strength. The surface treatment of the bonding surface using a laser is a suitable method to acquire a mechanical bonding mechanism and improve the bonding strength of the CFRP bonding joint. The study on the optimized laser process parameters is required for utilizing the benefits of laser surface processing.

The effect of surface treatment conditioning on shear bond strength between zirconia and dental resin cements (지르코니아 세라믹의 표면처리에 따른 치과용 접착제의 전단결합강도)

  • Kim, Ji-Hye;Seo, Jae-Min;Ahn, Seung-Geun;Park, Ju-Mi;Song, Kwang-Yeob
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • Purpose: The purpose of this study was to evaluate the effect of surface treatment on the shear bond strength of zirconia ceramic to 3 resin cements. Materials and methods: A total of 143 disk-shaped Zirconia blocks (HASS Co., Gangneung, Korea) were randomly divided into three treatment groups: (1) only 50 ${\mu}m$ $Al_2O_3$ sandblasting, (2) 50 ${\mu}m$ $Al_2O_3$ sandblast and zircona liner, (3) 50 ${\mu}m$ $Al_2O_3$ sandblasting and Rocatec (3M ESPE, Seefeld, Germany). Bistite II (Tokuyama Dental Co., Japan), Panavia F (Kuraray Medical, Japan), and Superbond C&B (Sun Medical, Japan) were used to cement onto the zirconia. After 24h of storage in distilled water, shear bond strength was evaluated. High value group was re-tested after thermocycling at 5,000 cycles(5-$55^{\circ}C$). Shear bond strength data were analyzed with one-way ANOVA, two-way ANOVA test and Post Hoc Test (${\alpha}$=.05). Shear bond strength data before and after thermocycling were analyzed with Independent sample T test (${\alpha}$=.05). Results: Super-bond C&B treated with Rocatec showed the most high shear bond strength. Super-bond C&B groups resulted in significantly higher than other cement groups (P<.05). Rocatec groups resulted in significantly higher than other surface treatment groups (P<.05). Shear bond strength has increased in Panavia F treated with Zirconia liner (P<.05). After thermocycling, shear bond strength was increased in Super-bond C&B treated with Rocatec but decreased in other groups (P<.05). Conclusion: Super-bond C&B cement resulted the highest shear bond strength and Rocatec system enhanced the shear bond strength. After thermocycling, shear bond strength has decreased in most resin cements except Super-bond C&B treated with Rocatec.

Adhesion Characteristic of Different Species Silicone Rubbers by Corona Treatment (코로나 방전 처리에 의한 이종 실리콘 고무의 접착특성)

  • Hong, Joo-Il;Huh, Chang-Su;Lee, Ki-Taek;Seo, Yu-Jin;Hwang, Cheong-Ho;Hwang, Sun-Mook
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.1868-1869
    • /
    • 2005
  • 이 논문은 반도전 실리콘 고무 표면에 코로나 방전 처리하여 이종의 실리콘 고무와의 접착 특성을 나타낸 것이다. 반도전 실리콘 고무 표면 상태를 발수성 등급에 따른 분류와 FTIR(Fourier Transform Infrared Spectroscopy)를 사용하여 평가하였다. 표면 상태 변화에 따른 반도전 실리콘 고무의 접착 특성은 T-peel test로 접착강도를 시험하였다. 실험 결과 고에너지의 코로나 방전으로 반도전 실리콘 고무의 결합쇄가 절단되었고 이 부분에 산소가 결합되어 극성 관능기를 생성하여 표면을 산화시켰다. 이러한 표면 상태 변화에 따른 접착강도는 초기 상태일 때 보다 코로나 방전 처리 후 증가하는 것을 확인 할 수 있었다. 이 논문을 통하여 코로나 방전 처리는 이종 계면의 접착 특성을 향상시킬 수 있으며, 이종 계면에서 발생하는 절연 파괴 전압을 높여 전기절연 성능을 향상시키는데 도움이 될 것이다.

  • PDF

Effect of surface roughness of AlN substrate and sintering temperature on adhesion strength of Ag thick film conductors (AlN 기판의 표면조도 및 소결온도가 Ag 후막도체의 접착강도에 미치는 영향)

  • Koo, Bon Keup
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.83-90
    • /
    • 2020
  • The effect of substrate surface roughness and sintering temperature on the adhesion strength of Ag-based thick film conductors formed on AlN substrates with excellent thermal conductivity was studied. The adhesion strength of the thick-film conductor manufactured using an AlN substrate having a surface roughness (Ra) of 0.5 was higher than that of a thick-film conductor manufactured using a substrate having a surface roughness greater or smaller than this. In the case of a substrate with a surface roughness of less than 0.5, the contact area between the Ag thick film conductor and the substrate was relatively smaller than that of a substrate with a surface roughness of 0.5, resulting in a lower adhesive strength. On the other hand, when a substrate having a surface roughness of more than 0.5 was used, it was found that the conductor film was not completely adhered to the substrate, and as a result, it was found that the adhesive strength was small. In addition, it was found that the surface smoothness of the Ag-based thick film conductor film obtained by sintering at 850℃ was the best compared to the smoothness of the conductor film obtained by sintering at different sintering temperatures, and as a result, it was found that the adhesive strength of the conductor film was the highest.

Properties of Silicon Coated Fabric for Membrane Treated by Low Temperature Plasma (저온플라즈마 처리에 의한 실리콘코팅 막구조 원단의 특성변화)

  • Park, Beob;Lee, Jang-Hun;Koo, Kang
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.60-60
    • /
    • 2011
  • 막구조는 근래에 와서 대공간 구조 및 지붕구조에 가장 보편적으로 사용되는 경량 인장 구조물로 각광받고 있다. 구조용 막재는 풍하중 및 설하중에 충분히 감당할 수 있도록 강도와 내구성을 가지고 있어야 한다. 일반적으로 막구조 재는 PVC코팅 폴리에스터막, 실리콘코팅 유리섬유막, PTFE코팅 유리섬유막이 있다. 제직되는 원단의 크기가 한정되어 있기 때문에 재단 후 접착하여 제작한다. 이 때문에 이음부분이 나 재단부분에 코팅으로 인한 접착이 어려워 고온고압으로 접착을 한다. 이 연구에서는 실리콘코팅 유리섬유막의 접착시 어려움을 보완하기 위해 저온 Plasma를 이용한 처리법으로 방전에 의해 Plasma를 발생시켜 50w, 100w 출력으로 10분, 20분간 처리하여 그 결과를 접촉각과 SEM 관찰을 통해 표면처리를 관찰하였다. Plasma 처리로 인해 실리콘 표면층에 균열이 발생하고 표면이 갈라짐을 확인할 수 있었다. 접촉각측정 결과 Plasma 출력과 시간의 증가함에 따라 접촉각은 감소하였다. 실리콘코팅 원단에 저온 Plasma 처리한 후 표면 특성을 분석하고 원단을 접착을 시켜 박리 강도를 측정함으로써 막구조 원단의 접착력 향상에 대한 연구를 진행하였다. KS K 0533 접착포의 박리 강도 시험방법으로 실리콘코팅 원단의 박리 강도를 측정한 결과 플라즈마 처리 원단이 플라즈마 미처리 원단보다 박리 강도가 향상된 것을 확인할 수 있었다. 저온 Plasma 처리 시간이 증가할수록 표면의 젖음성을 향상시켜 접촉각을 낮추었다. 이는 곧 표면에너지의 증가를 뜻하는 것으로 접착력을 증가시켜 실리콘코팅 원단의 접착성을 시킴으로써 강한 강도와 내구성을 갖춘 막구조물의 개발에 기대되고 있다.

  • PDF