• Title/Summary/Keyword: 표면 수식

Search Result 101, Processing Time 0.025 seconds

Predicting Methane Production on Anaerobic Digestion to Crop Residues and Biomass Loading Rates (혐기 소화 시 식물체 잔사 및 투입량에 따른 메탄 생산량 예측)

  • Shin, JoungDu;Hong, Seung-Gil;Park, SangWon;Kim, HyunWook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.75-82
    • /
    • 2016
  • Objective of this experiment was to predict the potential methane production with crop residues at different loading rates. Anaerobic digestion of barley and rapeseed straw substrates for biogas production was performed in Duran bottles at various biomass loading rates with crop residues. Through kinetic model of surface methodology, the methane production was fitted to a Gompertz equation. For the biogas production at mesophilic digestion with crop residues, it was observed that maximum yield was 37.2 and 28.0 mL/g at 6.8 and 7.5 days after digestion with 1% biomass loading rates of barley and rapeseed straws, respectively. For the methane content of mesophilic digestion, there were highest at 61.7% after 5.5 days and 75.0% after 3.4 days of digestion with barley and rapeseed straw on both 5% biomass loading rates, respectively. The maximum methane production potentials were 159.59 mL/g for 1% barley straw and 156.62 mL/g for 3% rapeseed straw at mesophilic digestion. Overall, it would be strongly recommended that biomass loading rate was an optimum rate at mesophilic digestion for using 1% barley and 3% rapeseed straws for feed stocks.

Measurement of the Axial Displacement Error of a Segmented Mirror Using a Fizeau Interferometer (피조 간섭계를 이용한 단일 조각거울 광축방향 변위 오차 측정)

  • Ha-Lim, Jang;Jae-Hyuck, Choi;Jae-Bong, Song;Hagyong, Kihm
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.1
    • /
    • pp.22-30
    • /
    • 2023
  • The use of segmented mirrors is one of the ways to make the primary mirror of a spaceborne satellite larger, where several small mirrors are combined into a large monolithic mirror. To align multiple segmented mirrors as one large mirror, there must be no discontinuity in the x, y-axis (tilt) and axial alignment error (piston) between adjacent mirrors. When the tilt and piston are removed, we can collect the light in one direction and get an expected clear image. Therefore, we need a precise wavefront sensor that can measure the alignment error of the segmented mirrors in nm scale. The tilt error can be easily detected by the point spread image of the segmented mirrors, while the piston error is hard to detect because of the absence of apparent features, but makes a downgraded image. In this paper we used an optical testing interferometer such as a Fizeau interferometer, which has various advantages when aligning the segmented mirror on the ground, and focused on measuring the axial displacement error of a segmented mirror as the basic research of measuring the piston errors between adjacent mirrors. First, we calculated the relationship between the axial displacement error of the segmented mirror and the surface defocus error of the interferometer and verified the calculated formula through experiments. Using the experimental results, we analyzed the measurement uncertainty and obtained the limitation of the Fizeau interferometer in detecting axial displacement errors.

A Permeable Wedge Crack in a Piezoelectric Material Under Antiplane Deformation (면외변형하의 압전재료에 대한 침투 쐐기균열)

  • Choi, Sung Ryul;Park, Jai Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.859-869
    • /
    • 2015
  • In this study, we analyze the problem of wedge cracks, which are geometrically unsymmetrical in transversely piezoelectric materials. A single concentrated antiplane mechanical load and inplane electrical load are applied at the point of the wedge surface, while one concentrated antiplane load is applied at the crack surface. The crack surfaces are considered as permeable thin slits, where both the normal component of electric displacement and the electric potential are assumed to be continuous across these slits. Using Mellin transform method, the problem is formulated and the Wiener-Hopf equation is derived. By solving the equation, the solution is obtained in a closed form. The intensity factors of the stress and the electric displacement are obtained for any crack length as well as inclined and wedge angles. Based on the results, the intensity factors are independent of the applied electric loads. The electric displacement intensity factor is always dependent on that of stress intensity factor, while the electric field intensity factor is zero. In addition, the energy release rate is computed. These solutions can be used as fundamental solutions which can be superposed to arbitrary electromechanical loadings.

Design of ceramics powder compaction process parameters (Part Ⅱ : Optimization) (세라믹스 분말 가압 성형 공정 변수설계(2부: 최적화))

  • Kim J. L.;Keum Y. T.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.27-33
    • /
    • 2005
  • In this study, the process parameters in ceramics powder compaction are optimized for getting high relative densities of ceramic products. To find optimized parameters, the analytic models of powder compaction are firstly prepared by 2-dimensional rod arrays with random green densities using a quasi-random multiparticle array. Then, using finite element method, the changes in relative densities are analyzed by varying the size of Al₂O₃ particle, the amplitude of cyclic compaction, and the coefficient of friction, which influence the relative density in cyclic compactions. After the analytic function of relative density associated process parameters are formulated by aid of the response surface method, the optimal conditions in powder compaction process are found by the grid search method. When the particle size of Al₂O₃ is 22.5 ㎛, the optimal parameters for the amplitude of cyclic compaction and the coefficient of friction are 75 MPa and 0.1103, respectively. The maximum relative density is 0.9390.

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(1) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(1)-흡착등온식을 이용한 평가)

  • Na, Choon-Ki;Han, Moo-Young;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.606-616
    • /
    • 2011
  • The objectives of this study were to evaluate the applicability of adsorption models for adsorption properties of adsorbents. For this study, adsorption experiment of $NO_3^-$ ion using anion exchange resin has been investigated under adsorption equilibrium and kinetic in bach process. Adsorption equilibrium experiment were carried out that two conditions is change of adsorbate concentration and change of adsorbent weight. Experiment results have been analyzed by adsorption isotherm models, energy models and kinetic models. Under the condition of change of adsorbate concentration was best described by Sips and Redlich-Perterson isotherm models. However case of change of adsorbent weight was described by Langmuir isotherm models. It seems reasonable to assume that isotherm model was dominated by multiple mechanism according to experiment condition.

Development of the Ship Resistance Calculation Program for Prediction of Towing Forces for damaged Ships (손상 선박의 예인력 추정을 위한 선박 저항 계산 프로그램 개발)

  • Choi, Hyuek-Jin;Kim, Eun-Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.2
    • /
    • pp.150-155
    • /
    • 2012
  • One of the primary purposes of tugs is for the towing of other ships in salvage operations. In order to conduct such a task safely, the tug should be capable of generating the appropriate towing forces. Therefore the prediction of resistance against a towed ship during towing operation is a very important and essential procedure. This paper studies the ship resistance calculation program to predict towing force. The calculation program consists of the functions that calculate basic hull resistance in calm water, added resistance due to wind, drifting, hull roughness, waves, shallow water and currents. All predictions are calculated by statistical and empirical methods by graph or formula. The calculation results made by this program are compared with the results from the U.S. Navy's Towing Manual. These results confirm that this computer program is quite capable of appropriately predicting the resistance of damaged ships.

An Evaluation on the Mechanical Performance of a Corroded Rebar as the Corrosion Pattern of Rebar in Concrete (콘크리트중에서의 철근부식형태에 따른 부식철근의 역학적 특성에 관한 연구)

  • Kim, Hyung-Rae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.393-396
    • /
    • 2008
  • The purpose of this paper is to find out quantitatively the relationship between the surface shape and the mechanical properties of corroded reinforcement. Three-dimensional measurements were carried out on the surface shape of variously corroded reinforcements and parameters expressing the characteristics of the shape, which included the maximum decrement of sectional area of reinforcement, its distribution along the axis. It was investigated that which parameters could correspond to the mechanical properties of corroded reinforcement and it was confirmed that the maximum decrement of sectional area of reinforcement could express the mechanical properties most appropriately. Finally, this paper proposes a constitutive model of corroded reinforcement for analyzing the structural behavior of reinforced concrete structures considering the localized corrosion of by finite element method.

  • PDF

A Study on Hybrid Finite Element Method for Solving Electromagnetic Wave Scattering (전자파 산란문제를 해결하기 위한 혼합 유한요소법에 관한 연구)

  • 박동희;강찬석;안정수
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.4 no.1
    • /
    • pp.38-43
    • /
    • 1993
  • A Hybrid Finite Element Method(HFEM) is applied to solve the electrormagnetic scattering from multi-layered dielectric cylinders. An unbounde region is divided into local boundary regions where a practical differential equation solution is obtained, with the remaining unbounded region represented by a boundary integral equation. If sources, media inhomogeneities, and anisotropies are local, a surgace may be defined to enclose them. Therefore the integral region so defined is bounded, and differential techniques may be used there. Also, in the re- maining unbounded region a boundary integral equation may be formulated using only a simple free - space green's function. Therefore, The local boundary is represented by a boundary - value problem with boundary conditions and solved by the finite element method. The advantage of the proposed method is simple and efficient in the work of electromagnetic scattering. The validity of the results have been verified by comparing results of other method(boundary element method). Examples has been presented to calculate the scattered fields of lossy dielectric cylinders of arbitray cross section.

  • PDF

Development of an Inverse Method Using Orthogonal Basis Functions for the Evaluation of Boundary Tractions on an Elastic Body (탄성체 경계 트랙션을 구하는 문제에서 상호 수직 기저 함수를 사용한 역문제 해석 방법의 개발)

  • Kim, Sa-Young;Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.487-493
    • /
    • 2010
  • Most structural analyses are concerned with the deformations and stresses in a body subjected to external loads. However, in many fields, inverse problems have to be interpreted to determine surface tractions or internal stresses from displacements measured on a remote surface. In this study, the inverse processes are studied by using the finite element method for the evaluation of internal stresses. Small errors in the measured displacements often result in a substantial loss of stability of an inverse system. In order to improve the stability of the inverse system, the displacements on a section near the region of the unknown tractions are predicted by using orthogonal basis functions. We use the Gram-Schmidt orthogonal technique to determine two bases for the displacements on a section near the region of the unknown tractions. Advantages over previous methods are discussed by using numerical examples.

Numerical Study on Flow and Heat Transfer Characteristics of Pipes with Various Shapes (파이프 형상에 따른 내부 열유동 특성과 성능에 관한 수치해석적 연구)

  • Park, Sang Hyeop;Kim, Sang Keun;Ha, Man Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.11
    • /
    • pp.999-1007
    • /
    • 2013
  • The present work reports numerical results of the pressure drop and heat transfer characteristics of pipes with various shapes such as circular, elliptical, circumferential wavy and twisted using a three-dimensional simulation. Numerical simulations are calculated for laminar to turbulent flows. The fully developed flow in pipes was modeled using steady incompressible Reynolds-averaged Navier-Stokes (RANS) equations. The friction and Colburn factor of each pipe are compared with those of a circular tube. The overall flow and heat transfer calculations are evaluated by the volume and area goodness factor. Finally, the objective of the investigation is to find a pipe shape that decreases the pressure loss and increases the heat transfer coefficient.