• Title/Summary/Keyword: 표면팽창

Search Result 253, Processing Time 0.026 seconds

Preparation and Sensory Characteristics of Bread Containing Schizandra chinensis Baillon (a Traditional Korean Medicinal Plant) (오미자(Schizandra chinensis Baillon)를 첨가한 식빵의 제조 및 관능적 특성)

  • Park, La-Young;Lee, Shin-Ho;Kim, Seok-Joong
    • Food Science and Preservation
    • /
    • v.17 no.5
    • /
    • pp.637-643
    • /
    • 2010
  • We investigated the characteristics of breads containing Schizandra chinensis Baillon (SCB) added as whole powder, as a powder prepared from juice, and as a concentrate prepared from a 95% (v/v) ethanolic fruit extract, added to wheat flour at 0.5% (w/w). Addition of any form of SCB lowered the pH and increased the titratable acidity in both doughs and breads compared with control values, and the whole and juice powders were more effective in this respect than was the concentrated ethanolic extract. Dough volume during fermentation was increased by addition of whole powder and concentrated ethanolic extract, but no baking loss was evident upon addition of any form of SCB. Regarding the bread surface, the lightness (L) value was increased by addition of juice powder and concentrated ethanolic extract, but neither the redness(a) and nor the yellowness (b) values showed such increases. Internal color measurements showed increased '-a-' value upon addition of any form of SCB, and increased '-b-' value when concentrated ethanolic extract was used, however, there were no significant changes in L value. Sensory evaluation of taste, flavor, color, and overall acceptability showed that bread prepared using whole powder was more acceptable than were the other forms.

Analysis the Use of Concrete Fine Aggregates of Coal Gasification Slag (콘크리트용 잔골재로서 석탄가스화 용융슬래그(CGS)의 활용성 분석)

  • Park, Kyung-Taek;Han, Min-Cheol;Hyun, Seung-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.2
    • /
    • pp.101-108
    • /
    • 2019
  • This study is analysis of the utilization as a concrete fine aggregate on CGS, a by-product of Integrated coal gasification combined cycle(IGCC). That is, in KS F 2527 "Concrete aggregate," properties of 1~12times to CGS were evaluated, focusing on quality items corresponding to natural aggregate sand(NS) and melted slag aggregate sand(MS). As a result, the distribution of grain shape, safety and expansion were all satisfied with KS standards by physical properties, but the quality was unstable at 7~12times of water absorption ratio and absolute dry density. The particle size distribution was unstable due to asymmetry distribution of coarse particles, and particles were too thick for 7~12times. The passing ratio of 0.08mm sieve was also out of the KS standard at part factor of 7~12times, but chloride content, clay contents, coal and lignite were all satisfactory. Meanwhile, chemical composition was satisfactory except for $SO_3$ in 1~6times, and content and amount of harmful substances were all within the specified value except for F in 7~12times. As a result of SEM analysis, the surface quality and porosity were 7~12times more than 1~6times, and it was the quality was degraded. Therefore, it is necessary to reduce the quality deviation by using separate measures in order to utilize it as concrete aggregate in the future, and if it is premixed with fine quality aggregate, it will contribute positively to solve aggregate supply shortage and utilize circulation resources.

Effect of limestone addition on mechanical properties of ceramic tiles with fly ash (플라이애시가 첨가된 도자타일 성능에 석회석 함량이 미치는 효과)

  • Lee, Jin-Wook;Han, Kyu-Sung;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.256-262
    • /
    • 2018
  • A great amount of fly ash, which is a waste from a thermal power plant, has not been appropriately recycled until now. Landfill of flay ash causes environmental pollution and enormous economic costs. In this study, manufacturing of architectural ceramic tile was investigated replacing fly ash with clay raw material. The properties of porcelain tile was analyzed after manufacturing porcelain tile with mineral based glaze and fast firing process. In particular, the effect of the fly ash addition on the properties of ceramic tile was investigated by increasing the amount of limestone addition. Porcelain tile with fly ash showed excellent bending strength, water absorption, warping and abrasion resistance. However, a significant decrease in durability was observed through the autoclave test. Addition of limestone increased the water absorption, twisting and hydration expansion of the ceramic tile, but it was confirmed that the durability of the ceramic tile with fly ash was greatly improved. In conclusion, recycled architectural ceramic tiles, which can meet domestic construction standards, could be manufactured with the addition of fly ash and limestone.

Defect Inspection and Physical-parameter Measurement for Silicon Carbide Large-aperture Optical Satellite Telescope Mirrors Made by the Liquid-silicon Infiltration Method (액상 실리콘 침투법으로 제작된 대구경 위성 망원경용 SiC 반사경의 결함 검사와 물성 계수 측정)

  • Bae, Jong In;Kim, Jeong Won;Lee, Haeng Bok;Kim, Myung-Whun
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.5
    • /
    • pp.218-229
    • /
    • 2022
  • We have investigated reliable inspection methods for finding the defects generated during the manufacturing process of lightweight, large-aperture satellite telescope mirrors using silicon carbide, and we have measured the basic physical properties of the mirrors. We applied the advanced ceramic material (ACM) method, a combined method using liquid-silicon penetration sintering and chemical vapor deposition for the carbon molded body, to manufacture four SiC mirrors of different sizes and shapes. We have provided the defect standards for the reflectors systematically by classifying the defects according to the size and shape of the mirrors, and have suggested effective nondestructive methods for mirror surface inspection and internal defect detection. In addition, we have analyzed the measurements of 14 physical parameters (including density, modulus of elasticity, specific heat, and heat-transfer coefficient) that are required to design the mirrors and to predict the mechanical and thermal stability of the final products. In particular, we have studied the detailed measurement methods and results for the elastic modulus, thermal expansion coefficient, and flexural strength to improve the reliability of mechanical property tests.

Effect of Binder and Electrolyte on Electrochemical Performance of Si/CNT/C Anode Composite in Lithium-ion Battery (리튬이온 이차전지에서 Si/CNT/C 음극 복합소재의 전기화학적 성능에 대한 바인더 및 전해액의 효과)

  • Choi, Na Hyun;Kim, Eun Bi;Yeom, Tae Ho;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.327-333
    • /
    • 2022
  • In this study, silicon/carbon nanotube/carbon (Si/CNT/C) composites for anode were prepared to improve the volume expansion of silicon used as a high-capacity anode material. Si/CNT were prepared by electrostatic attraction of the positively charged Si and negatively charged CNT and then hydrothermal synthesis was performed to obtain the spherical Si/CNT/C composites. Poly(vinylidene fluoride) (PVDF), polyacrylic acid (PAA), and styrene butadiene rubber (SBR) were used as binders for electrode preparation, and coin cell was assembled using 1.0 M LiPF6 (EC:DMC:EMC = 1:1:1 vol%) electrolyte and fluoroethylene carbonate (FEC) additive. The physical properties of Si/CNT/C anode materials were analyzed using SEM, EDS, XRD and TGA, and the electrochemical performances of lithium-ion batteries were investigated by charge-discharge cycle, rate performance, dQ/dV and electrochemical impedance spectroscopy tests. Also, it was confirmed that both capacity and rate performance were significantly improved using the PAA/SBR binder and 10 wt% FEC-added electrolyte. It is found that Si/CNT/C have the reversible capacity of 914 mAh/g, the capacity retention ratio of 83% during 50 cycles and the rate performance of 70% in 2 C/0.1 C.

The Effect of Pressurized Grouting on Pullout Resistance and the Group Effect of Compression Ground Anchor (가압식 압축형 지반앵커의 인발저항력 증대효과 및 군효과 특성)

  • Kim, Tae-Seob;Sim, Bo-Kyoung;Lee, Kou-Sang;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.5-19
    • /
    • 2010
  • The purpose of this study is to figure out the effect of pressurized grouting on the pullout resistance and the group effect of the compression ground anchor by performing pilot-scale chamber tests and field tests. The laboratory tests are carried out for 3-types of soils which are abundant in the Korean peninsular. Experimental results showed that the enlargement of anchor diameters estimated from the cavity expansion theory matches reasonable well with that obtained from experiments. Moreover, the required injection time as a function of the coefficient of permeability of each soil type was proposed. A series of in-situ anchor pullout tests were also performed to experimentally figure out the effect of pressurized grouting on the pullout resistance. Experimental results also showed that the effect of the pressurized grouting is more prominent in a softer ground with smaller SPT-N value in all of the following three aspects: increase in anchor diameter; pullout resistance; and surface roughness. The pressurized grouting effect in comparison with gravitational grouting was found to be almost nil if the SPT-N value is more than 50. Based on experimental results, a new equation to estimate the pullout resistance as a function of the SPT-N value was proposed. And based on in-situ group anchor pullout tests results, a new group effect equation was proposed which might be applicable to decomposed residual soils which are abundant in the Korean peninsular.

Synthesis of Core@Shell-Structured Silicon@Carbon Nanoparticles by One-Pot Spray Pyrolysis Process and Application as Anode Materials for Lithium-Ion Batteries (단일 분무 열분해 공정을 이용한 코어@쉘 구조의 Si@C 나노 분말 합성 및 리튬 이온 전지 음극소재 적용)

  • Seong Ho Jung;Jae Seob Lee;Jung Sang Cho
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.220-227
    • /
    • 2024
  • As the demand for lithium-ion batteries with high capacity and high energy density has rapidly increased, silicon anodes (theoretical capacity = 3,570 mA h g-1) have garnered attention as potential replacements for conventional graphite anodes (theoretical capacity = 372 mA h g-1). However, silicon anodes suffer from severe volume expansion (~360%) during lithiation, low ionic conductivity (10-14 ~ 10-13 cm2 S-1), and low electrical conductivity (10-2 S cm-1), resulting in poor cycling and rate performance. To address these issues, this study synthesized core@shell-structured silicon@carbon nanoparticles (Si@C NPs) via a one-pot spray pyrolysis process using Pluronic-F127. Pluronic-F127 in the spray solution contributes to the synthesis of nanoparticles by preventing the formation of silicon nanoparticle/dextrin agglomerates and by undergoing pyrolysis simultaneously. Additionally, dextrin derived amorphous carbon was coated on the surface of the silicon nanoparticles to act as an electron transport pathway within the anodes and enhance the electrical contact between the silicon nanoparticles. The Si@C NPs exhibited a discharge capacity of 1,912 mA h g-1 after 50 cycles at 1.0 A g-1 and high rate capabilities (discharge capacity of 1,493 mA h g-1 at 3.0 Ag-1). The silicon@carbon composite nanoparticle synthesis strategy based on the spray pyrolysis process presented in this study is expected to offer a new direction for improving the performance of silicon anode materials.

Study on Physical Change in the Earthen Finish Layer of Tomb Murals Due to Drying (건조에 따른 고분벽화 토양 마감층의 물리적 변화)

  • Cho, Ha-Jin;Lee, Tae-Jong;Lee, Hwa-Soo;Chung, Yong-Jae
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.4
    • /
    • pp.148-165
    • /
    • 2017
  • Mural paintings drawn inside ancient tombs are very sensitive to changes in the environment such as temperature and humidity, especially the finish layer of the tomb murals differ in preservability depending on the material properties and humidity conditions. In this study, I examined the mural painting of Songsan-ri Tomb No.6, where the finish layer was made of earth, and identified the physical changes that can occur due to drying, depending on the material properties of the finish layer. I found out through particle size analysis that the finish layer of the mural painting in Songsan-ri Tomb No.6 is about 85.0wt% below silt, about 14.0wt% clay therein, mostly composed of silt and below clay. I also found out through physical property evaluation that surface change rate of samples showed the largest change at 15.5% in reproduced finish layer sample made up of bentonite, followed by 7.8% of reproduced finish layer sample made up of celadon soil, 6.3% of reproduced finish layer sample made up of loess, 6.2% of reproduced finish layer sample composed of white clay and the same order of change in appearance was confirmed in each sample consisted of soil. In addition, it showed the same trend of surface change rate, and the bentonite condition showed the largest change, in the measurement of shrinkage rate and expansion rate. The experiment shows that the finish layer composed of soil is affected by cohesion among particles according to the content of fine parts and the relationship between the agglomeration due to the content of the differentiated part and the stress due to the expansibility depending on the kind of the clay mineral etc. Therefore, it can be concluded that the physical damage occurred in the mural painting finish layer of the Songsan-ri Tomb No.6 is related to the factors such as the material characteristics of the soil and the highly humid environmental change inside the tomb.

Cooking and textural properties of specialty germinated brown rices (기능성 쌀 품종 발아현미의 취반 및 식감특성)

  • Cho, Dong-Hwa;Park, Hye-Young;Lee, Seuk-Ki;Park, Jiyoung;Choi, Hye-Sun;Woo, Koan-Sik;Kim, Hyun-Joo;Sim, Eun-Yeong;Ahn, Eok-Keun;Oh, Sea-Kwan
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.575-583
    • /
    • 2017
  • Germination is a well-known economical technique that has been utilized to enhance the nutritional value of brown rice. Owing to its higher nutritive quality, germinated brown rice has received significant attention in the past decade. In this study, the physicochemical and cooking properties of specialty brown rice (SBR) were analyzed before and after germination. Germination enhanced cooking properties such as water absorption, expanded volume, and increased solid solubility of cooked SBR. The SBR texture measured using tensipresser, was significantly improved by germination. The hardness of cooked SBR was decreased by germination, but stickiness was increased. Pasting analysis of the SBR flours revealed a decrease in all viscosity values (peak viscosity, breakdown, setback, and final viscosity) after germination. However, the gelatinization temperature remains unchanged upon germination. Additionally, amylose content and amylopectin chain length distribution of SBR starch were slightly changed by germination. These results indicate that germination leads to a substantial improvement in the cooking properties and texture of SBR.

Study of Iodide Adsorption on Organobentonite using X-ray Absorption Spectroscopy (X-선 흡수분광기를 이용한 유기벤토나이트의 요오드 흡착연구)

  • Yoon, Ji-Hae;Ha, Ju-Young;Hwang, Jin-Yeon;Hwang, Byoung-Hoon;Gordon E. Brown, Jr.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2009
  • The adsorption of iodide on untreated bentonite and bentonites modified with organic cation (i.e., hexadecylpyridinium chloride monohydrate ($HDP^+$)) was investigated, and the organobentonites were characterized using uptake measurements, ${\mu}$-XRD, and electrophoretic mobilities measurement. Uptake measurements indicate that bentonite has a high affinity for $HDP^+$. Our ${\mu}$-XRD study indicates that organobentonites significantly expanded in basal spacing and organic cations were substantially intercalated into the interlayer spaces of bentonite. The electrophoretic mobility indicates that organobentonite tht is modified with organic cations in excess of the CEC of bentonite is completely different from untreated bentonite in the surface charge distribution. We found significant differences in adsorption capacities of iodide depending on the bentonite properties as follows: iodide adsorption capacities were 439 mmol/kg for the bentonite modified with $HDP^+$ at an equivalent amount corresponding to 200% of the CEC of bentonite whereas no adsorption of iodide was observed for the untreated bentonite. The molecular environments of iodine adsorbed on organobentonites were further studied using I K-edge and $L_{III}$-edge x-ray absorption spectroscopy (XAS). The X-ray absorption near-edge structure (XANES) of iodine spectra from organobentonites was similar to that of KI reference solution. Linear combination fitting of EXAFS data suggests the fraction of iodine reacted with the organic compound increased with increasing loading of the organic compound on organobentonites. In this study, we observed significant differences in the adsorption environments of iodide depending on the modified property of bentonite and suggest that an organobentonite has potential as reactive barrier material around a nuclear waste repository containing anionic radioactive iodide.