• Title/Summary/Keyword: 표면파 탐사

Search Result 101, Processing Time 0.023 seconds

Shallow Shear-wave Velocities Using the Microtremor Survey Method (상시미동 측정을 통한 천부 횡파속도 연구)

  • Hwang, Yoon-Gu;Kim, Ki-Young
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.381-392
    • /
    • 2006
  • The passive surface wave survey using microtremor is conducted in areas of crystalline rock basements to obtain average shear-wave velocity structures to 30 m deep (Vs30), on which the earthquake-resistant design standard is based. Test data were recorded at two sites with triangular and L-shaped arrays for 4 seconds with an sampling interval of 2 ms. The microtremor recorded at a site were analysed using the spatial autocorrelation method to obtain phase-velocity spectra and effects of major factors such as size and shape of away and number of record and receiver were examined. At the other site, shear-wave velocities were derived from VSP and microtremor data separately. The results from these two methods agree to each other reasonably well, indicating that the microtremor method can be an effective geophysical tool to measure Vs30.

Study on Comparison of Methods for Estimation of Shear Wave Velocity in Core Zone of Existing Dam (기존 댐 코어죤의 전단파속도 산정기법 비교 연구)

  • Ha, Ik-Soo;Oh, Byung-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.33-43
    • /
    • 2008
  • In this study, for the purpose of evaluating the shear wave velocity in core zone, cross-hole test, down-hole test, MASW (Multi-channel Analysis of Surface Wave), and seismic reflection survey were carried out on the crest of the existing 'Y' dam. The results of field tests were compared one another. Furthermore, the field test results were compared with the result by the Sawada's empirical recommendation method. The purpose of this study is to compare the results of four kinds of field tests for evaluation of shear wave velocity in core zone of existing dam, to verify applicability of the empirical method which was recommended by Sawada and Takahashi, and to recommend a reasonable method for evaluation of shear wave velocity which is needed to evaluate tile maximum shear modulus of core zone. From the results of four kinds of field tests such as cross-hole test, down-hole test, MASW, and seismic reflection survey, it was found that the shear wave velocity distributions were similar within 18 m in depth and the results obtained by MASW and seismic reflection survey were almost the same by 30 m in depth. For evaluation of shear wave velocity in core zone of the existing dam, in consideration that it is not easy to bore the hole ill the core zone of existing dam, surface surveys such as MASW and seismic reflection method are recommended as realistic methods. On condition that it is impossible to conduct the field test and it is preliminary investigation, it is recommended that Sawada's low bound empirical equation be used.

Analytical Studies for SASW Measurements Underwater

  • Lee, Byung-Sik
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.53-62
    • /
    • 1997
  • Analytical studies were conducted to develop the Spectral-Analysis-of-Surface-Waves (SASW) method for underwater use. For the precise estimation of the in-situ soil stiffness profile from SASW measurements, it is essential to determine economical and reasonable theoretical dispersion curves reflecting various experimental conditions. In this paper, therefore, analytical methods are mainly discussed, which were developed to determine theoretical dispersion curves of surface waves propagated along the soil-water interface. Application of the analytical methods is then illustrated by an example involving estimation of a stiffness profile through a forward modeling process of SASW measurements. Applicabilities of the SASW method as well as the developed analytical methods are evaluated, respectively, from the example.

  • PDF

Development of Data Analysis Method for Surface Wave Test (표면파 지반 탐사를 위한 새로운 신호 처리기법의 개발)

  • Park, Hyung-Choon;Kim, Dong-Soo;Cho, Sung-Eun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.237-240
    • /
    • 2007
  • The evaluation of shear modulus (or shear wave velocity) profile of site is very important in the various fields of geotechnical engineering. To obtain shear wave velocity profile, various in-situ seismic methods using surface waves have been developed. These surface wave based in-situ seismic methods have their own strength and weakness. In this study, new seismic site characterization method using the harmonic wavelet analysis of wave (HWAW) was proposed to overcome some of weaknesses in the existing surface wave based seismic site characterization methods. HWAW method which is based on time-frequency analysis using harmonic wavelet transform have been developed to determine phase and group velocities of waves. In order to estimate the applicability of HWAW method, field tests were performed. Through field applications and comparison with other test results, the applicability of the proposed method were verified.

  • PDF

One Dimensional Seismic Response Analysis on Sub-ground of Architectural Heritage in Seoul, Korea (서울지역 주요 문화재 하부 지반에 대한 일차원 지진응답해석)

  • Jeon, Seongkon;Kim, Dukmoon;Kwon, Youngcheul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.9
    • /
    • pp.29-36
    • /
    • 2014
  • Under the situation that the seismic vulnerability are a worsening problem in many world's megacities, the disaster preparedness including earthquake hazards is a matter of primary concern in the capital city of Korea, Seoul. Especially, because it is hard to move or dismantle the architectural heritages, the mitigation of earthquake damages is potentially more difficult than other structures. Moreover, in order to decide the proper preparedness plan against future earthquakes, it is very important to understand how soils pass the seismic waves to architectural heritages. In this paper, therefore, the ground condition and depth of bedrock was investigated by the MASW-method at heritages located in Seoul. Then one-dimensional seismic response analysis was conducted based on the distribution of shear wave velocity. As the major result of analyses, peak acceleration, site amplification factor and natural period are proposed in each site for recurrence period.

Estimation of Dynamic Material Properties for Fill Dam : I. In-situ Shearwave Velocity Profiles (필댐 제체 재료의 동적 물성치 평가 : I. 현장 전단파 속도 주상도)

  • Kim, Jong-Tae;Kim, Dong-Soo;Park, Heon-Joon;Kwon, Hyek-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.69-85
    • /
    • 2009
  • It is very important to measure reliable dynamic properties of each zone in dam for seismic design. However, the Vs values of core and rock-fill zone are seldom determined by field test. Consequently, seismic design in dam is performed using Vs values assumed or empirically determined. So, it is required that reliable Vs has to be evaluated by in-situ test. In this study, surface wave method, which is nondestructive, was applied to dam to evaluate Vs profiles of core and rock-fill zone in dam. In 6 dams, using SASW and HWAW methods, Vs profiles were evaluated reliably. D/B of Vs profiles of each zone with depth and relationship between confining pressure and Vs profiles of rock-fill zone were constructed including existing results of other dams. The evaluated D/B and proposed relationship were compared with the frequently used empirical method by Sawada and Takahashi.

A study about frequency domain analysis of impact-wave for detecting of structural defects in the concrete structure (구조물의 안전진단을 위한 충격파의 주파수 영역 탐사에 관한 연구)

  • Suh Baeksoo;;Kim Hyoungjun;Lee Sangchul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.165-180
    • /
    • 2005
  • Impact seismic wave test is a method for nondestructive testing of concrete structure using of stress wave which is propagated and reflected from internal flaws within concrete structure and external surface, In this study, we performed non-destructive testing using impact seismic wave test for safety diagnosis of civil engineering structures. For this, I've compared and analized the result in the way of reflective method mostly using on one-dimension such as tunnel lining, and penetration method using the way of cross hole and tomography.

  • PDF

Hybrid Integration of P-Wave Velocity and Resistivity for High-Quality Investigation of In Situ Shear-Wave Velocities at Urban Areas (도심지 지반 전단파속도 탐사를 위한 P-파 속도와 전기비저항의 이종 결합)

  • Joh, Sung-Ho;Kim, Bong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.45-51
    • /
    • 2010
  • In urban area, design and construction of civil engineering structures such as subway tunnel, underground space and deep excavation is impeded by unreliable site investigation. Variety of embedded objects, electric noises and traffic vibrations degrades the quality of site investigation, whatever the site-investigation technique would be. In this research, a preliminary research was performed to develop a dedicated site investigation technique for urban geotechnical sites, which can overcome the limitations of urban sites. HiRAS (Hybrid Integration of Surface Waves and Resistivity) technique which is the first outcome of the preliminary research was proposed in this paper. The technique combines surface wave as well as electrical resistivity. CapSASW method for surface-wave technique and PDC-R technique for electrical resistivity survey were incorporated to develop HiRAS technique. CapSASW method is a good method for evaluating material stiffness and PDC-R technique is a reliable method for determination of underground stratification even in a site with electrical noise. For the inversion analysis of HiRAS techniuqe, a site-specific relationship between stress-wave velocity and resistivity was employed. As for outgrowth of this research, the 2-D distribution of Poisson's ratio could be also determined.

S-wave Velocity Structure and Radial Anisotropy of Saudi Arabia from Surface Wave Tomography (표면파 토모그래피를 이용한 사우디아라비아의 S파 속도구조 및 이방성 연구)

  • Kim, Rinhui;Chang, Sung-Joon;Mai, Martin;Zahran, Hani
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • We perform a 3D tomographic inversion using surface wave dispersion curves to obtain S-velocity model and radial anisotropy beneath Saudi Arabia. The Arabian Peninsula is geologically and topographically divided into a shield and a platform. We used event data with magnitudes larger than 5.5 and epicentral distances shorter than $40^{\circ}$ during 2008 ~ 2014 from the Saudi Geological Survey. We obtained dispersion curves by using the multiple filtering technique after preprocessing the event data. We constructed SH- and SV-velocity models and consequently radial anisotropy model at 10 ~ 60 km depths by inverting Love and Rayleigh group velocity dispersion curves with period ranges of 5 ~ 140 s, respectively. We observe high-velocity anomalies beneath the Arabian shield at 10 ~ 30 km depths and low-velocity anomalies beneath the Arabian platform at 10 km depth in the SV-velocity model. This discrepancy may be caused by the difference between the Arabian shield and the Arabian platform, that is, the Arabian shield was formed in Proterozoic thereby old and cold, while the Arabian platform is covered by predominant Paleozoic, Mesozoic, and Cenozoic sedimentary layers. Also we obtained radial anisotropy by estimating the differences between SH- and SV-velocity models. Positive anisotropy is observed, which may be generated by lateral tension due to the slab pull of subducting slabs along the Zagros belt.

A study of $Q_{Lg}^{-1}$ by the reversed two station method in the crust of central South Korea (Reversed Two Station Method (RSTM)에 의한 중부지방 $Q_{Lg}^{-1}$ 연구)

  • Cheong, Tae-Woong
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.211-218
    • /
    • 2002
  • The reversed two station method (RSTM) devised by Chun et al. (1987) is widely used to obtain $Q_{Lg}^{-1}$ for Lg wave data with hypocentral distance greater than 90 km. By applying RSTM to the Lg data of central South Korea with hypocentral distance between 95 and 381 km, we obtained high $Q_{Lg}^{-1}$. The value of $Q_{Lg}^{-1}$ is very similar with that of southeastern S. Korea, which is derived from the same method for similar distances. The studied hypocentral range seems to distort $Q_{Lg}^{-1}$ to high value because decay rate in this range is higher than 0.5, which is typical decay rate of surface wave.

  • PDF