• Title/Summary/Keyword: 표면조건

Search Result 4,890, Processing Time 0.046 seconds

Manufacturing Method and Characteristics of the Dongrok(copper chloride) pigments (동록(염화동) 안료의 제조방법 및 특성에 관한 연구)

  • KANG Yeongseok;PARK Juhyun;MUN Seongwoo;HWANG Gahyun;KIM Myoungnam;LEE Sunmyung
    • Korean Journal of Heritage: History & Science
    • /
    • v.56 no.2
    • /
    • pp.148-169
    • /
    • 2023
  • Hayeob pigment is known as one of the traditional dark green pigments, but the color, raw material, and manufacturing method have not been clearly identified. However, comparing the analysis results of the particle shape and constituent minerals of Hayeob pigments revealed through pigment analysis studies of colored cultural properties such as Dancheong, Gwaebul, and paintings, Hayeob pigments appear to be the same as Dongrok pigments produced by salt corrosion. Therefore, in order to restore Hayeob pigment, the manufacturing method of Dongrok pigment was studied based on the records of old literature. The Dongrok pigment manufacturing method confirmed in the old literature records is a natural corrosion method in which copper powder and a caustic are mixed and then left in a humid condition to corrode. Based on this, artificial corrosion using a corrosion tester was adopted to corrode the copper powder more efficiently, and an appropriate mixing ratio was selected by analyzing the state of corrosion products according to the mixing ratio of the caustic agent. In addition, the manufacturing method of Dongrok pigment was established by adding a salt removal process to remove residual caustic agents and a purification process to increase chroma during pigment coloring. The prepared Dongrok pigments have a bluish green or green color, show an elliptical particle shape and a form in which small particles are aggregated, and a porous surface is observed. The main constituent elements are copper(Cu) and chlorine(Cl), and the main constituent mineral is identified as atacamite [Cu2Cl(OH)3]. As a result of an accelerated weathering test to evaluate the stability of the prepared Dongrok pigments, it was found that the greenness partially decreased and the yellowness significantly increased as deterioration progressed. Before deterioration, the Dongrok pigments had lower yellowness compared to the Hayeob pigments of the old Dancheong, but after deterioration, yellowness increased significantly, and it was found to have a similar chromaticity range as Dancheong's Hayeob pigments. As a result, the prepared Dongrok pigments were confirmed to be similar to Dancheong's Hayeob pigments in terms of color as well as particle shape and constituent minerals.

Development of a Rapid Enrichment Broth for Vibrio parahaemolyticus Using a Predictive Model of Microbial Growth with Response Surface Analysis (미생물 생장 예측모델과 반응표면분석법을 이용한 Vibrio parahaemolyticus의 신속 증균배지 개발)

  • Yeon-Hee Seo;So-Young Lee;Unji Kim;Se-Wook Oh
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.6
    • /
    • pp.449-456
    • /
    • 2023
  • In this study, we developed Rapid Enrichment Broth for Vibrio parahaemolyticus (REB-V), a broth capable enriching V. parahaemolyticus from 100 CFU/mL to 106 CFU/mL within 6 hours, which greatly facilitates the rapid detection of V. parahaemolyticus. Using a modified Gompertz model and response surface methodology, we optimized supplement sources to rapidly enrich V. parahaemolyticus. The addition of 0.003 g/10 mL of D-(+)-mannose, 0.002 g/10 mL of L-valine, and 0.002 g/10 mL of magnesium sulfate to 2% (w/v) NaCl BPW was the most effective combination of V. parahaemolyticus enrichment. Optimal V. parahaemolyticus culture conditions using REB-V were at pH 7.84 and 37℃. To confirm REB-V culture efficiency compared to 2% (w/v) NaCl BPW, we assessed the amount of enrichment achieved in 7 hours in each medium and extracted DNA samples from each culture every hour. Real-time PCR was performed using the extracted DNA to verify the applicability of this REB-V culture method to molecular diagnosis. V. parahaemolyticus was enriched to 5.452±0.151 Log CFU/mL in 2% (w/v) NaCl BPW in 7 hours, while in REB-V, it reached 7.831±0.323 Log CFU/mL. This confirmed that REB-V enriched V. parahaemolyticus to more than 106 CFU/mL within 6 hours. The enrichment rate of REB-V was faster than that of 2% (w/v) NaCl BPW, and the amount of enrichment within the same time was greater than that of 2% (w/v) NaCl BPW, indicating that REB-V exhibits excellent enrichment efficiency.

Effects of Change in Patient Position on Radiation Dose to Surrounding Organs During Chest Lateral Radiography with Auto Exposure Control Mode (자동노출제어장치를 적용한 흉부 측면 방사선검사 시 환자 위치 변화가 주변 장기의 선량에 미치는 영향)

  • Seung-Uk Kim;Cheong-Hwan Lim;Young-Cheol Joo;Sin-Young Yu
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.903-909
    • /
    • 2023
  • The purpose of this study is to compare and analyze the effect of changes in the patient's central position on the exposure dose and image quality of surrounding organs during a chest lateral examination using an Auto Exposure Control(AEC). The experiment was conducted on a human body phantom. A needle was attached to the lower part of the center of the coronal plane of the phantom, and a lead ruler was attached to the lower part of the detector so that the 50 cm point was located at the lower center of the AEC ion chamber. The exposure conditions were 125 kVp, 320 mA, the distance between the source and the image receptor was 180 cm, and the exposure field size was 14 × 17 inches. Only one AEC ion chamber was used at the bottom center, and the density was set to '0' and sensitivity to 'Middle', and the central X-ray was incident vertically toward the 6th thoracic vertebra. With AEC mode applied, the 50 cm point of the needle and lead ruler were aligned and the phantom was moved 5 cm toward the stomach (F5) and 5 cm toward the back (B5), and the dose factor was analyzed by measuring ESD. The ESD of the thyroid gland according to the change in patient center position was 232.60±2.20 μGy for Center, 231.22±1.53 μGy for F5, and 184.37±1.19 μGy for B5, and the ESD of the breast was 288.54±3.03 μGy for Center, F5 was 260.97±1.93 μGy, B5 was 229.80±1.62 μGy, and the ESD of the center of the lung was 337.02±3.25 μGy for Center, F5 was 336.09±2.29 μGy, and B5 was 261.76±1.68 μGy. As a result of comparing the average values of dose factors between each group, the difference in average values was statistically significant (p<0.01), and each group appeared to be independent. As a result of the study, there was no significant difference in the dose to the thyroid, breast, and center of the lung according to the change in the patient's central position, except for the breast (10%) when the patient moved forward about 5 cm. However, movement of about 5 cm posteriorly resulted in an average dose reduction of 23.7%. Additionally, when the patient's central position was moved to the rear, image quality deteriorated.

Characterization of the Behavior of Naturally Occurring Radioactive Elements in the Groundwater within the Chiaksan Gneiss Complex : Focusing on the Mineralogical Interpretation of Artificial Weathering Experiments (치악산 편마암 지질의 지하수 내 자연 방사성 원소의 거동 특성 연구: 인공풍화 실험을 통한 광물학적 해석)

  • Woo-Chun Lee;Sang-Woo Lee;Hyeong-Gyu Kim;Do-Hwan Jeong;Moon-Su Kim;Hyun-Koo Kim;Soon-Oh Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • The study area was Gangnim-myeon, Hoengseong-gun, Gangwon-do, composed of the Chiaksan gneiss complex, and it was revealed that the concentrations of uranium (U) and thorium (Th) within the groundwater of the study area exceeded their water quality standards. Hence, artificial weathering experiments were conducted to elucidate mineralogically the mechanisms of their leaching using drilling cores obtained from the corresponding groundwater aquifers. First of all, the mineralogical compositions of core samples were observed, and the results indicated that the content of clinochlore, a member of the chlorite group of minerals that can form through low- and intermediate-temperature metamorphisms, was relatively higher. In addition, the Th concentration was measured ten times higher than that of U. The results of artificial weathering experiments suggested that the Th concentrations gradually increased through the dissolution of radioactive-element-bearing minerals up to the first day, and then they tended to decrease. It could be attributed to the fact that Th was leached with the dissolution of thorite, which might be a secondary mineral, and then dissolved Th was re-precipitated as the various forms of salt, such as sulfate. Even though the U content was lower than that of Th in the core samples, the U concentration was one hundred times higher than that of Th after the weathering experiments. It is likely caused by the gradual dissolution and desorption of U included in intensively weathered thorite or adsorbed as a form of UO22+ on the mineral surface. In addition, the leaching tendency of U and Th was positively correlated with the bicarbonate concentration. However, the concentrations between U and Th in groundwater exhibited a relatively lower correlation, which might result from the fact that they occurred from different sources, as aforementioned. Among various kinetic models, the parabolic diffusion and pseudo-second-order kinetic models were confirmed to best fit the dissolution kinetics of both elements. The period that would be taken for the U concentration to exceed its drinking-water standard was inferred using the regressed parameters of the best-fitted models, and the duration of 29.4 years was predicted in the neutral-pH aquifers with relatively higher concentrations of HCO3, indicating that U could be relatively quickly leached out into groundwater.

A Statistical model to Predict soil Temperature by Combining the Yearly Oscillation Fourier Expansion and Meteorological Factors (연주기(年週期) Fourier 함수(函數)와 기상요소(氣象要素)에 의(依)한 지온예측(地溫豫測) 통계(統計) 모형(模型))

  • Jung, Yeong-Sang;Lee, Byun-Woo;Kim, Byung-Chang;Lee, Yang-Soo;Um, Ki-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.87-93
    • /
    • 1990
  • A statistical model to predict soil temperature from the ambient meteorological factors including mean, maximum and minimum air temperatures, precipitation, wind speed and snow depth combined with Fourier time series expansion was developed with the data measured at the Suwon Meteorolical Service from 1979 to 1988. The stepwise elimination technique was used for statistical analysis. For the yearly oscillation model for soil temperature with 8 terms of Fourier expansion, the mean square error was decreased with soil depth showing 2.30 for the surface temperature, and 1.34-0.42 for 5 to 500-cm soil temperatures. The $r^2$ ranged from 0.913 to 0.988. The number of lag days of air temperature by remainder analysis was 0 day for the soil surface temperature, -1 day for 5 to 30-cm soil temperature, and -2 days for 50-cm soil temperature. The number of lag days for precipitaion, snow depth and wind speed was -1 day for the 0 to 10-cm soil temperatures, and -2 to -3 days for the 30 to 50-cm soil teperatures. For the statistical soil temperature prediction model combined with the yearly oscillation terms and meteorological factors as remainder terms considering the lag days obtained above, the mean square error was 1.64 for the soil surfac temperature, and ranged 1.34-0.42 for 5 to 500cm soil temperatures. The model test with 1978 data independent to model development resulted in good agreement with $r^2$ ranged 0.976 to 0.996. The magnitudes of coeffcicients implied that the soil depth where daily meteorological variables night affect soil temperature was 30 to 50 cm. In the models, solar radiation was not included as a independent variable ; however, in a seperated analysis on relationship between the difference(${\Delta}Tmxs$) of the maximum soil temperature and the maximum air temperature and solar radiation(Rs ; $J\;m^{-2}$) under a corn canopy showed linear relationship as $${\Delta}Tmxs=0.902+1.924{\times}10^{-3}$$ Rs for leaf area index lower than 2 $${\Delta}Tmxs=0.274+8.881{\times}10^{-4}$$ Rs for leaf area index higher than 2.

  • PDF

The study of thermal change by chemoport in radiofrequency hyperthermia (고주파 온열치료시 케모포트의 열적 변화 연구)

  • Lee, seung hoon;Lee, sun young;Gim, yang soo;Kwak, Keun tak;Yang, myung sik;Cha, seok yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.97-106
    • /
    • 2015
  • Purpose : This study evaluate the thermal changes caused by use of the chemoport for drug administration and blood sampling during radiofrequency hyperthermia. Materials and Methods : 20cm size of the electrode radio frequency hyperthermia (EHY-2000, Oncotherm KFT, Hungary) was used. The materials of the chemoport in our hospital from currently being used therapy are plastics, metal-containing epoxy and titanium that were made of the diameter 20 cm, height 20 cm insertion of the self-made cylindrical Agar phantom to measure the temperature. Thermoscope(TM-100, Oncotherm Kft, Hungary) and Sim4Life (Ver2.0, Zurich, Switzerland) was compared to the actual measured temperature. Each of the electrode measurement position is the central axis and the central axis side 1.5 cm, 0 cm(surface), 0.5 cm, 1.8 cm, 2.8 cm in depth was respectively measured. The measured temperature is $24.5{\sim}25.5^{\circ}C$, humidity is 30% ~ 32%. In five-minute intervals to measure the output power of 100W, 60 min. Results : In the electrode central axis 2.8 cm depth, the maximum temperature of the case with the unused of the chemoport, plastic, epoxy and titanium were respectively $39.51^{\circ}C$, $39.11^{\circ}C$, $38.81^{\circ}C$, $40.64^{\circ}C$, simulated experimental data were $42.20^{\circ}C$, $41.50^{\circ}C$, $40.70^{\circ}C$, $42.50^{\circ}C$. And in the central axis electrode side 1.5 cm depth 2.8 cm, mesured data were $39.37^{\circ}C$, $39.32^{\circ}C$, $39.20^{\circ}C$, $39.46^{\circ}C$, the simulated experimental data were $42.00^{\circ}C$, $41.80^{\circ}C$, $41.20^{\circ}C$, $42.30^{\circ}C$. Conclusion : The thermal variations were caused by radiofrequency electromagnetic field surrounding the chemoport showed lower than in the case of unused in non-conductive plastic material and epoxy material, the titanum chemoport that made of conductor materials showed a slight differences. This is due to the metal contents in the chemoport and the geometry of the chemoport. And because it uses a low radio frequency bandwidth of the used equipment. That is, although use of the chemoport in this study do not significantly affect the surrounding tissue. That is, because the thermal change is insignificant, it is suggested that the hazard of the chemoport used in this study doesn't need to be considered.

  • PDF

Effects of Evaporative Water-loss from Cultural Pots on Growth of Pot-grown Ornamental Plants (화분(花盆)의 수분증발(水分蒸發)이 분식화훼류(盆植花卉類)의 생육(生育)에 미치는 영향(影響))

  • Suh, Youn-gkyo
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.2
    • /
    • pp.317-343
    • /
    • 1977
  • This study was carried out to obtain the informations about evaporation from pot, soil temperature and soil atmosphere composition in pot, and the effect on the growth of nine ornamental species using seven different containers. The investigated containers were clay pot(CP), clay pot painted in green(CP-P), varnished clay pot(CP-V), polyethylene film inserting in clay pot(CP-PI), clay pot mulched with black polyethylene film(CP-PM), porcelain pot(POP), and plastic pot(PLP). Nine ornamental species were balsam(Impatiens balsamina), chrysanthemum(Chrysanthemum morifolium), cosmos(Cosmos bipinatus), English ivy(Hedera helix), geranium(Pelargonium zonale), kochia(Kochia scoparia var. trichophila), marigold(Tagetes patula), ornamental kale(Brassica oleraceae var. acephala), and salvia (Salvia splendens). The results obtained are summarized as follows: 1. Dry weight of all tested species grown in PLP, POP, CP-P, CP-V and CP-PI was heavier than that of CP. 2. Plant height in nine tested species grown in PLP, POP, CP-P, CP-V, and CP-PI was taller than that of CP. 3. Geranium grown in PLP, POP, CP-P, and CP-V gave more number of leaf than that of CP. 4. The number of flower in balsam grown in PLP, POP, CP-P, CP-V and CP-PI was more than that of CP. The result from marigold was very similar to this tendency. Spike length and floret number in salvia gave the same tendency, but its spike number was not different among containers used. 5. The average diurnal evaporation from PLP and POP was about 43% of that of CP. About two third of total evaporation from CP was through pot wall. 6. The evaporation rate from the slowest to the highest was PLP, POP, CP-P, CP-V, CP-PI, CP-PM and CP. Containers inhibiting evaporation through pot wall hold more soil moisture than CP from one day after water supply. 7. The more evaporative water-loss from containers gave the lower soil temperature. The variation of soil temperature among containers was higher during the day than the night. 8. The $O_2$ concentration of soil atmosphere in CP was higher than that of nonporous containers, and the difference between them was 0.40-1.12%. The range of the $O_2$ concentration 17.95~19.62%. The $CO_2$ concentration of soil atmosphere in CP was lower than that of nonporous containers, and its range was 0.59-1.76%. This deviation in soil atmosphere composition did not influenced on the growth of plants. 9. There was a possitive correlation between the amount of soil water and the plant growth. 10. Plant grown on CP gave more total nitrogen content in top growth than that on PLP. C/N ratio was somewhat low in plant on CP. From the above results, $O_2$ and $CO_2$ concentration in soil atmosphere did not gave enough deviation to the extent which affect the plant growth. The effect of soil moisture on the plant growth using different containers was the far-most significant factor from this investigation. Therefore, it was obious that the utilization of the nonporous container might save the cost for water supply and reduce the production cost of the pot-grown ornamental plant in Korea eventually.

  • PDF

The Evaluation of Radiation Dose to Embryo/Fetus and the Design of Shielding in the Treatment of Brain Tumors (임산부의 전뇌 방사선 치료에 있어서의 태아의 방사선량 측정 및 차폐 구조의 설계)

  • Cho, Woong;Huh, Soon-Nyung;Chie, Eui-Kyu;Ha, Sung-Whan;Park, Yang-Gyun;Park, Jong-Min;Park, Suk-Won
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.4
    • /
    • pp.203-210
    • /
    • 2006
  • Purpose : To estimate the dose to the embryo/fetus of a pregnant patient with brain tumors, and to design an shielding device to keep the embryo/fetus dose under acceptable levels Materials and Methods : A shielding wall with the dimension of 1.55 m height, 0.9 m width, and 30 m thickness is fabricated with 4 trolleys under the wall. It is placed between a Patient and the treatment head of a linear accelerator to attenuate the leakage radiation effectively from the treatment head, and is placed 1 cm below the lower margin of the treatment field in order to minimize the dose to a patient from the treatment head. An anti-patient scattering neck supporters with 2 cm thick Cerrobend metal is designed to minimize the scattered radiation from the treatment fields, and it is divided into 2 section. They are installed around the patient neck by attach from right and left sides. A shielding bridge for anti-room scattered radiation is utilized to place 2 sheets of 3 mm lead plates above the abdomen to setup three detectors under the lead sheets. Humanoid phantom is irradiated with the same treatment parameters, and with and without shielding devices using TLD, and ionization chambers with and without a build-up cap. Results : The dose to the embryo/fetus without shielding was 3.20, 3.21, 1.44, 0.90 cGy at off-field distances of 30, 40, 50, and 60 cm. With shielding, the dose to embryo/fetus was reduced to 0.88, 0.60, 0.35, 0.25 cGy, and the ratio of the shielding effect varied from 70% to 80%. TLD results were 1.8, 1.2, 0.8, 1.2, and 0.8 cGy. The dose measured by the survey meter was 10.9 mR/h at the patient's surface of abdomen. The dose to the embryo/fetus was estimated to be about 1 cGy during the entire treatment. Conclusion : According to the AAPM Report No 50 regarding the dose limit of the embryo/fetus during the pregnancy, the dose to the embryo/fetus with little risk is less than 5 cGy. Our measurements satisfy the recommended values. Our shielding technique was proven to be acceptable.

Removal of Red Tide Organisms -2. Flocculation of Red Tide Organisms by Using Loess- (적조생물의 구제 -2. 황토에 의한 적조생물의 응집제거-)

  • KIM Sung-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.455-462
    • /
    • 2000
  • The objective of this study was to examine the physicochemical characteristics of coagulation reaction between loess and red tide organisms (RTO) and its feasibility, in developing a technology for the removal of RTO bloom in coastal sea. The physicochemical characteristics of loess were examined for a particle size distribution, surface characteristics by scanning electron microscope, zeta potential, and alkalinity and pH variations in sea water. Two kinds of RTO that were used in this study, Cylindrothen closterium and Skeietonema costatum, were sampled in Masan bay and were cultured in laboratory. Coagulation experiments were conducted using various concentrations of loess, RTO, and a jar tester. The supernatant and RTO culture solution were analyzed for pH, alkalinity, RTO cell number. A negative zeta potential of loess increased with increasing pH at $10^(-3)M$ NaCl solution and had -71.3 mV at pH 9.36. Loess had a positive zeta potential of +1,8 mV at pH 1.98, which resulted in a characteristic of material having an amphoteric surface charge. In NaCl and $CaCl_2$, solutions, loess had a decreasing negative zeta potential with increasing $Na^+\;and\;Ca^(+2)$ ion concentration and then didn't result in a charge reversal due to not occurring specific adsorption for $Na^+$ ion while resulted in a charge reversal due to occurring specific adsorption for $Ca^(+2)$ ion. In sea water, loess and RTO showed the similar zeta potential values of -112,1 and -9.2 mV, respectively and sea sand powder showed the highest zeta potential value of -25.7 mV in the clays. EDLs (electrical double-layers) of loess and RTO were extremely compressed due to high concentration of salts included in sea water, As a result, there didn't almost exist EDL repulsive force between loess and RTO approaching each other and then LVDW (London-yan der Waals) attractive force was always larger than EDL repulsive force to easily form a floe. Removal rates of RTO exponentially increased with increasing a loess concentration. The removal rates steeply increased until $800 mg/l$ of loess, and reached $100{\%}$ at 6,400 mg/l of loess. Removal rates of RTO exponentially increased with increasing a G-value. This indicated that mixing (i.e., collision among particles) was very important for a coagulation reaction. Loess showed the highest RTO removal rates in the clays.

  • PDF

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF