• Title/Summary/Keyword: 표면열화

Search Result 532, Processing Time 0.018 seconds

A Study on the Characteristic and Manufacture Technique for the Gold wire of Phoenix-Shaped Glass Ewer by National Treasure No. 193 (국보 제193호 봉수형유리병 금사의 특성과 제작기법 연구)

  • Hwang, Hyun Sung;Yun, Eun Young
    • Journal of Conservation Science
    • /
    • v.31 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • The Phoenix-shaped Glass Ewer, which is No. 193 National Treasure, was seriously damaged by a unique form of green glass pieces when excavated among a number of burial accessories of Hwangnamdaechong known to have been formed in the 5th century. While it has long been exhibited at the National Museum of Korea since its treatment for conservation treatment at conservation science laboratory in 1984, the existing adhesive materials seriously deteriorated for the 30 years, and the condition was quite unstable. The epoxy resin used as a restorative materials turned yellowing due to the light and heat so much that it was no longer able to exhibit it in a stable and effective manner. As a result, a re-treatment for conservation was conducted lately. This study focuses on the three pieces of Gold wires used to carefully wrap up the handle of the Phoenix-shaped Glass Ewer broken into three pieces, which has not been studied so far. As for the analysis method for Gold wires, SEM-EDS and Stereo Microscope were used for nondestructive analysis. First of all, the result of the SEM-EDS analysis shows that the composition was Au 91.9 wt.%-Au 92.8 w.t% and Ag 5.9 wt.%-Ag 6.5 wt.%, which indicates that it was an alloy made of Au and Ag. The production technique of Gold wires was also observed by means of optical microscopes. In general, Gold wires were manufactured by a drawing process in which a lump of gold was beaten or pulled out of a hole or by a process of twisting a gold plate. However, Gold wires separated from the handle of the Phoenix-shaped Glass Ewer did not involve any trace of twisting on the surface. Rather, fine vertical stripes were observed with the sections filled up. Hence, it is thought that this Ewer went through a drawing process and then was mended. As a result, no certain relation with the golden mending material used for the Phoenix-shaped Glass Ewer was verified. The findings above indicate that most of the existing researches on Gold wires recognized them, not as separate remains, but merely as a component of other golden remains. Thus, there has been little systematic study on the manufacturing techniques of Gold wires. The future study on Gold wires may verify the correlation between the Gold wires used to fix the handle of the Phoenix-shaped Glass Ewer, which is examined in this study, with that of golden remains in the Silla era.

A Rational Design of Coin-type Lithium-metal Full Cell for Academic Research (차세대 리튬 금속 전지 연구 및 개발을 위한 코인형 전지의 효율적 설계)

  • Lee, Mingyu;Lee, Donghyun;Han, Jaewoong;Jeong, Jinoh;Choi, Hyunbin;Lee, Hyuntae;Lim, Minhong;Lee, Hongkyung
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.3
    • /
    • pp.65-75
    • /
    • 2021
  • Coin cell is a basic testing platform for battery research, discovering new materials and concepts, and contributing to fundamental research on next-generation batteries. Li metal batteries (LMBs) are promising since a high energy density (~500 Wh kg-1) is deliverable far beyond Li-ion. However, Li dendrite-triggered volume fluctuation and high surface cause severe deterioration of performance. Given that such drawbacks are strongly dependent on the cell parameters and structure, such as the amount of electrolyte, Li thickness, and internal pressure, reliable Li metal coin cell testing is challenging. For the LMB-specialized coin cell testing platform, this study suggests the optimal coin cell structure that secures performance and reproducibility of LMBs under stringent conditions, such as lean electrolyte, high mass loading of NMC cathode, and thinner Li use. By controlling the cathode/anode (C/A) area ratio closer to 1.0, the inactive space was minimized, mitigating the cell degradation. The quantification and imaging of inner cell pressure elucidated that the uniformity of the pressure is a crucial matter to improving performance reliability. The LMB coin cells exhibit better cycling retention and reproducibility under higher (0.6 MPa → 2.13 MPa) and uniform (standard deviation: 0.43 → 0.16) stack pressure through the changes in internal parts and introducing a flexible polymer (PDMS) film.