• Title/Summary/Keyword: 폴리프로필렌 보강 섬유

Search Result 67, Processing Time 0.019 seconds

Comparative Study on the Flexural Performance of Concrete Reinforced with Polypropylene and Steel Fibers (폴리프로필렌 및 강섬유 보강콘크리트의 휨 성능에 관한 비교 연구)

  • Cho, Baiksoon;Lee, Jong-Han;Back, Sung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1677-1685
    • /
    • 2014
  • Short discrete fibers compounded with concrete can enhance the tensile resistance and ductility of concrete. Recently, the effectiveness of the reinforcement has increased according to the increasing length of steel fiber. However, the lengthening of steel fiber requires reducing the ratio of the fiber content to remain the workability and quality of concrete. Thus, the present study evaluated the flexural performance of fiber reinforced concrete with less than l.0% fiber volume ratios of steel fiber, 30mm and 60mm long, and polypropylene fiber, being evaluated as a good reinforcing material with chemical stability, long-term durability, and cost effectiveness. Concrete with more than 0.25% steel and 0.5% polypropylene fibers improved the brittle failure of concrete after reaching cracking strength. Concrete reinforced with polypropylene exhibited deflection-softening behavior, but that with more than 0.5% polypropylene delayed stress reduction and recovered flexural strength by 60 to 80% after cracking strength. In conclusion, concrete reinforced with more than 0.75% polypropylene could improve structural flexural performance. In particular, energy absorption capacity of reinforced concrete with 1.0% polypropylene fiber was similar to that with 0.5% and 0.7% steel fibers.

Effect of Fiber Volume Fraction on Bond Properties of Structural Synthetic Fiber in Polypropylene Fiber Reinforced Cement Composites (폴리프로필렌섬유보강 시멘트 복합재료에 정착된 구조용 합성섬유의 부착거동에 미치는 섬유 혼입률의 효과)

  • Lee, Jin Hyeong;Park, Chan Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.125-135
    • /
    • 2011
  • The bond properties between polypropylene fiber reinforced cement composites and structural synthetic fiber have been investigated. in this paper. Three levels of polypropylene fibers volume fraction were used, 0.10%, 0.15%, and 0.20% in a series of Dog-bone pull out tests. The bond strength between structural synthetic fiber and polypropylene fiber reinforced cement composites increases with the volume fraction of polypropylene fiber, but the bond strength decreases above the amount of 0.20% by volume of polypropylene fiber reinforced cement composites. Also, the addition of polypropylene fiber a significant improved the interface toughness and the frictional resistance, The microstructure of structural synthetic fiber surface was investigated after the pullout test. The scratched of structural synthetic fiber increased with the polypropylene fiber volume fraction.

Evaluating Structural Performance of High-Strength Concrete Corbels Containing Steel and Polypropylene Fibers (강섬유 및 폴리프로필렌 섬유로 보강된 고강도콘크리트 내민받침의 구조 거동 평가)

  • Yang, Jun-Mo;Lee, Joo-Ha;Min, Kyung-Hwan;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.747-754
    • /
    • 2008
  • In this study, high strength concrete corbels reinforced with steel fibers and polypropylene fibers, and subjected to the vertical and horizontal loads were constructed and tested. The results showed that performance in terms of load carrying capacities, stiffness, ductility, crack width, and number of cracks was improved, as the steel fibers and polypropylene fibers were added. The polypropylene fiber reinforced concrete corbels resulted in higher ductility in presence of horizontal loads, but showed larger crack width than the steel fiber reinforced concrete corbels. And, the heads of the headed bars provided excellent end anchorage of the main tension tie reinforcement. Experimental results presented in this paper are also compared with various prediction models proposed by codes and researchers. The refined strut-and-tie model showed more accurate and conservative predictions in presence of horizontal loads, and the truss model proposed by Fattuhi provides fairly good predictions for fiber reinforced concrete corbels.

A Study on the Strength and Drying Shrinkage Crack Control Characteristics of Polypropylene Fiber Reinforced Concrete (폴리프로필렌 섬유보강 콘크리트의 강도 및 건조수축균열 제어특성 연구)

  • 오병환;이명규;유성원;백상현
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.151-161
    • /
    • 1996
  • Recently, polypropylene fiber reinforced mortar and concrete as civil and architectural materials have been used in major countries in the world. Polypropylene fiber reinforced concrete has many advantages in terms of economical aspect, chemical stability and durability. It has been reported that polypropylene fiber can control restrained tensile stresses and cracks and increase toughness, resistance to impact, corrosion, fatigue and durability. The purpose of the present study is, therefore, to investigate the strength as well as many mechanical characteristics including toughness and shrinkage control properties. A specially devjsed shrinkage test has been applied to measure the crack control characteristics of polypropylene fiber reinforced concrete. The present study indicates that the polypropylene fiber reinforced concrete curbs greatly the crack occurrence due to shrinkage and enhances toughness resistance. The present study provides a firm base for the efficient use of polypropylene fiber reinforced concrete in actual construction such as pavements and slab structures.

Enhancing the Performance of Polypropylene Fiber Reinforced Cementitious Composite Produced with High Volume Fly Ash (폴리프로필렌 섬유로 보강된 하이볼륨 플라이애시 시멘트 복합재료의 성능 향상 기법)

  • Lee, Bang Yeon;Bang, Jin Wook;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.118-125
    • /
    • 2013
  • The synthetic fibers including Polyvinyl alcohol and Polyethylene fibers have been successfully used in the manufacture of high ductile fiber reinforced cementitious composites. Polypropylene (PP) fiber has also been used in composites, not for the purpose of achieving a high level of tensile ductility but to improve the fire resistance performance of concrete exposed to high temperatures. This paper discusses the method for enhancing the performance of composites supplemented with PP fiber. Five types of mixture proportions were designed with high volume fly ash for testing the performance of composites. Type I cement and fly ash F were used as binding materials. The water-to-binder ratio was 0.23~0.25, and the amount of PP fiber used was 2 vol%. Polystyrene bead were also used to increase the tensile ductility of composites. A series of experiments including slump, density, compression and uniaxial tension tests were performed to evaluate the performance of cementitious composites supplemented with PP fiber. From the test results, it was exhibited that the performance of composites supplemented with PP fiber can be enhanced by adopting the mechanics and statistics theory.

Fracture Characteristics of Polypropylene Fiber Reinforced Concrete (폴리프로필렌 섬유보강 콘크리트의 파괴특성 연구)

  • Shin-Won Paik
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.230-240
    • /
    • 1997
  • An experimental research investigation of the fracture properties of polypropylene fiber reinforced concrete is reported. Fibers used in this experiment were two types, monofilament and fibrillated polypropylene fibers. Fiber length was 19 mm, and volume fractions were 0, 1, 2, and 3%. Also, as initial notch depths influence the fracture properties of fiber reinforced concrete, the notch depth ratios by specimen height were 0.15, 0.30 and 0.45. The main objective of this experimental program is to obtain the load-deflection and the load-CMOD curves, to investigate the fracture properties of the polypropylene fiber reinforced concretes. Therefore, the flexural specimen testings on the four-point bending were conducted. Then, the load-load point displacement and the load-crack mouth opening displacement curves were measured. The effects of different volume fractions of the monofilament and the fibrillated polypropylene fiber reinforced concrete on the compressive strength, flexural strength and toughness, stress intensity factor, and fracture energy were investigated through the experimental results.

  • PDF

A Study on the Strength, Toughness and Crack Control Characteristics of Polypropylene Fiber Reinforced Concrete (폴리프로필렌 합성섬유보강 콘크리트의 강도, 인성 및 균열제어 특성 연구)

  • 오병환;한승환;차수원;백상현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.305-310
    • /
    • 1995
  • 토목 및 건축재료로서 폴리프로필렌 섬유 모르타르 및 콘크리트의 사용은 미국, 영 국 등지에서 개발되기 시작하여 많은 연구가 진행되어 왔는데, 가격이 저렴하고, 화학적인 안정성과 내구성이 우수하여 그 사용이 점차 증대되고 있는 실정이다. 이러한 폴리프로필렌 섬유의 사용은 모르타르 및 콘크리트가 건조나 냉각에 의해 수축될 때 구속에 의해 발생하 는 인장응력 및 균연을 제어하고, 인성의 증가와 충격, 마모, 피로에 대한 저항성, 내구성을 증대시키는 등의 장점을 가지는 것으로 보고되고 있다. 본 연구에서는 이러한 폴리프로필렌 섬유 모르타르 및 콘크리트의 역학적 거동특성인 압축강도, 인장강도, 인성, 유동성과 균열 특성을 실험적으로 규명하고자 하였다. 실험결과 폴리프로필렌의 혼입량이 증가할수록 압축 강도, 인장강도, 인성의 증가를 보였으나, 혼입향 0.2%를 초과할 경우 유동성, 강도 모두 감 소하는 것을 볼 수 있었다. 그리고 단섬유형 보다는 메쉬 형태의 폴리프로필렌 섬유가 역학 적 특성면에서 우수한 것으로 관찰되었으며, Kraai 방법에 의한 소성수축균열제어 특성 실 험에서 약 45% 이상으 균열감소 (0.1%혼입) 효과를 볼 수 있었다.

  • PDF

Study of Mechanism for Improving Tensile Elastic Modulus of Self-reinforced Composite (친환경 저비중 자기보강 복합소재 개발을 위한 공정 변수별 영향도 평가)

  • Yun, Deok Woo;Kang, Hyun Min
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.197-203
    • /
    • 2015
  • Tensile properties of polypropylene based self-reinforced composites were investigated as a function of process variables of the double-belt lamination equipment such as pressure, temperature and cooling conditions. Elastic modulus was enhanced approximately 6 times from 0.2 to 1.2 GPa. The improvement mechanism was studied by identification of crystalline structure changes using DSC and XRD analysis. In addition, morphology change of self-reinforced composites was also investigated by SEM analysis in order to reveal the degree of impregnation.