• Title/Summary/Keyword: 폴리카르복실산

Search Result 13, Processing Time 0.029 seconds

Preparation and Properties of Waterborne Anionomers Based on Carboxylated Polycaprolactonediol - Effect of the Carboxylated soft-segment composition and Average molecular weight (카르복실화된 폴리카프로락톤디올을 가진 수분산 폴리우레탄의 제조와 특성(II) - 카르복실화된 소프트 세그멘트 조성과 평균 분자량의 영향)

  • Sang-Woo Park;Dong-hoo Lim;Jung-Eun Yang;Dong-Jin Lee;Han-DO Kim
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.04a
    • /
    • pp.363-366
    • /
    • 2001
  • PDF

Gradient Structures and Surface Composition of Polypropylene/Ethylene-Propylene Rubber Blends (폴리프로필렌/에틸렌-프로필렌 고무 블렌드 경사구조 및 표면조성)

  • Kim, Seog Je;Lee, Sung-Goo;Lee, Jae Heung;Choi, Kil-Yeong
    • Journal of Adhesion and Interface
    • /
    • v.2 no.4
    • /
    • pp.24-31
    • /
    • 2001
  • Polypropylenes(PP) with different melt index values were mixed with ethylene-propylene rubber(EPR) or ethylene-propylene diene monomer rubber(EPDM) and an ethylene copolymer containing carboxylic acid group in a twin screw extruder. Then test specimens were prepared from the pellets of the blends with an injection molding machine. The mechanical properties and morphology of fractured surfaces were measured. Relative peak intensities of carboxylic acid group on the specimen surface were measured with an attennuated total reflection infrared spectrometer (ATR-IR) and compared with each other. The blend specimens were found to have the gradient morphology of rubber domains in PP matrix in the core region and PP skin layer. The blends containing PP of higher melt index showed greater content of ethylene copolymer containing carboxylic acid on the surface when the relative peak intensities of ATR-IR for carboxylic acid were compared. As the melt index values were increased, the decrease tendency in mechanical propeties such as tensile strength and impact strength was more significant for PP/EPR blends than PP/EPDM blends.

  • PDF

Preparation of Chitosan/Poly-${\gamma}$-glutamic Acid Nanoparticles and Their Application to Removal of Heavy Metals (키토산/폴리감마글루탐산 나노입자의 제조 및 중금속 제거에의 응용)

  • Sung, Ik-Kyoung;Song, Jae Yong;Kim, Beom Soo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.475-479
    • /
    • 2011
  • Chitosan is a natural polymer that has many physicochemical(polycationic, reactive OH and $NH_2$ groups) and biological(bioactive, biocompatible, and biodegradable) properties. In this study, chitosan nanoparticles were prepared using poly-${\gamma}$-glutamic acid(${\gamma}$-PGA) as gelling agent. Nanoparticles were formed by ionic interaction between carboxylic groups in ${\gamma}$-PGA and amino groups in chitosan. Chitosan(0.1~1 g) was dissolved in 100 ml of acetic acid (1% v/v) at room temperature and stirred overnight to ensure a complete solubility. An amount of 0.1 g of ${\gamma}$-PGA was dissolved in 90 ml of distilled water at room temperature. Chitosan solution was dropped through needle into beaker containing ${\gamma}$-PGA solution under gentle stirring at room temperature. The average particle sizes were in the range of 80~300 nm. The prepared chitosan/${\gamma}$-PGA nanoparticles were used to examine their removal of several heavy metal ions($Cd^{2+}$, $Pb^{2+}$, $Zn^{2+}$, $Cu^{2+}$, and $Ni^{2+}$) as adsorbents in aqueous solution. The heavy metal removal capacity of the nanoparticles was in the order of $Cu^{2+}$ > $Pb^{2+}$ > $Cd^{2+}$ > $Ni^{2+}$ > $Zn^{2+}$.

Characterization of the Nature of Cd(II) Ion Binding Sites on Poly(acrylic acid) Using$^{113}Cd$NMR (카드뮴-113 NMR을 이용한 폴리아크릴산의 카드뮴(Ⅱ) 이온에 대한 결합자리의 특성연구)

  • Chung, Kun Ho;Koo, Ja-Eung;Shin, Hyun Sang;Moon, Hichung
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.44-49
    • /
    • 1996
  • The cadmium(Ⅱ)-carboxylate complexes of monocarboxylates and poly(acrylic acid) (PAA) in an aqueous solution were investigated using 113Cd NMR spectroscopy. From these spectral data the chemical shifts of the monocarboxylate (e.g. acetate, benzoate and propanoate) complexes of Cd(Ⅱ) were evaluated (CdL+: -22 to -24 ppm range; CdL2: -39 to -40 ppm range; L: carboxylate). The chemical shift of cadmium(Ⅱ) bound on PAA changed in value from -36.6 to -38.2 ppm when the [PAA]/[Cd] ratios were varied from 12 to 118 eq/mol at a constant pH of 6. The 113Cd chemical shift was sensitive to the change in solution pH: the chemical shift changed from 1.6 to -37.6 ppm when the pH was rasied from 1 to 6 at a constant [PAA]/[Cd] ratio of 39 eq/mol. These results show that under these conditions, the dominant species formed in solution is 1 : 2 complex (CdL2), and 1 : 1 complex (CdL+) is only formed at low pH, when polyanion concentration is low.

  • PDF

Preparation and Characterization of Crosslinked Block and Random Sulfonated Polyimide Membranes for Fuel Cell (블록 및 랜덤 가교 술폰화 폴리이미드막의 제조 및 연료전지특성 평가)

  • Lee, Young-Moo;Park, Chi-Hoon;Lee, Chang-Hyun;Chung, Youn-Suk
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.241-251
    • /
    • 2006
  • In this study, crosslinked copolyimides with random (r-) and block (b-) structure were fabricated using N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid and pentanediol as crosslinkers. Linear r- and b-sulfonated copolyimides were also fabricated for comparison. Ion exchange capacities of r- and b-copolyimides were very similar to each other owing to their strong dependence of sulfonic acid content. The physical crosslinking via dimerization of carboxylic acid groups induced a reduced average interchain distance in b-copolyimide without crosslinkers. Consequently, its water uptake and methanol permeability were lower than those of r-sulfonated copolyimides. Simultaneously, the reduced interchain distance increased the content of fixed-charged ions per unit volume. The high fixed-charged ion density contributed to an enhancement of proton conductivity In the b-sulfonated copolyimide. Crosslinking caused the reduction of average interchain distance between polymer chains irrespective of types of crosslinker and polymer structure, leading to low methanol permeability. On the contrary, their proton conductivity was improved owing to formation of effective hydrophilic channels responsible for proton conduction. In particular, this trend was observed in r-copolyimide containing a fixed charged ion.

Synthesis and Characterization of Poly(Urethane-Methyl methacrylate) Hybrid Emulsion as a Plastic Coating Resin (플라스틱 코팅용 Poly(Urethane-MMA) 혼성 에멀젼 합성 및 특성 연구)

  • Yeom, Ji-Yoon;Baek, Kyung-Hyun;Lee, Jun-Young;Yi, Gyoung-Bae;Yoo, Byung-Won;Kim, Jung-Hyun
    • Journal of Adhesion and Interface
    • /
    • v.8 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Poly(urethane-methyl methacrylate) hybrid emulsions can be controlled with their thermal, mechanical and anti-chemical properties as plastic coating materials. In this study, water dispersed poly(urethane-methyl methacrylate) hybrid emulsions were prepared by prepolymer synthesis and soap free emulsion polymerization. For imparting hydrophilicity on polyurethane prepolymer, 2,2-bis (hydroxymethyl) propionic acid was added to the polyurethane prepolymer with methyl methacrylate monomer and was neutralizated by triethylamine (TEA). After neutralization, the prepolymer mixture was dispersed in the water phase with stable droplets. The synthesis was carried out with chain extension from the ethylene diamine and initiation of methyl methacrylate by soap free emulsion polymerization. Stable poly(urethane-methyl methacrylate) hybrid emulsion was successfully obtained with different synthetic conditions and acrylic monomer contents. Poly(urethane-methyl methacrylate) hybrid emulsion were characterized and compared with tensile strength, viscosity, and adhesion properties.

  • PDF

A Study on the Curing Characteristics and the Synthesis of Polyurethane Acrylate Hybrid Emulsion (폴리우레탄 아크릴레이트 하이브리드 에멀젼의 합성 및 경화특성에 관한 연구)

  • Han, Sang-Hoon;Park, Dong-Won
    • Applied Chemistry for Engineering
    • /
    • v.17 no.2
    • /
    • pp.132-137
    • /
    • 2006
  • Polyurethane acrylate hybrid emulsions were prepared by seeded polymerization techniques. In the synthesis, seeded polyurethane dispersion containing a carboxylic group was used to endow hydrophilicity to the hybrid emulsion and various acrylates such as methyl methacrylate (MMA), 2-hydroxy ethylmethacrylate (2-HEMA), n-butyl acrylate (n-BA) and acrylic acid (AAc) were used to endow hydrophobicity. The particle size and distribution of various emulsion particles such as polyurethane acrylate hybrid emulsion, polyurethane dispersion homopolymer, acrylate emulsion, and physical blending emulsion were measured by a particle size analyzer. The average particle size of hybrid emulsion was greater than physical blending emulsion. And tensile strength, 100% modulus, elongation, and swelling properties of the polyurethane acrylate hybrid emulsion were studied and compared with those of polyurethane homopolymer, acrylate emulsion, and physically blended compositor, respectively. To improve chemical and physical resistance, this paper review a melamine hardener and compares it for effects on the physical properties of cured coating.

A Study on the Dyeing Property of Polycarboxylic Acid Treated Cotton Fabrics with Chelidonium majus Extracts (애기똥풀 추출액에 대한 Polycarboxylic Acid 처리 면직물의 염색특성 연구)

  • Choi, Kyung-Eun;Kang, Sung-Il;Rhie, Jeon-Sook;Chung, Yong-Sik
    • Korean Journal of Human Ecology
    • /
    • v.9 no.1
    • /
    • pp.43-50
    • /
    • 2006
  • The main colorant of Chelidonium majus extracts is a berberine which shows relatively good dyeability onto silk fabrics in the appropriate dyeing conditions without mordant, But cotton fabrics are difficult to dye with berberine because of the low substantivity the cationic to cellulosic fibers. we treated cotton fabrics using three types of polycarboxylic acid, DL-malic acid, citric acid, 1,2,3,4-butanetetracarboxylic acid(BTCA) to increase dyeability of Chelidonium majus extracts onto cotton fabrics. As a result the cotton fabrics treated with polycarboxylic acid could be dyed with Chelidonium majus extracts and also showed yellow vividly. The dye uptake were increased with increasing the number of carboxy groups. And so dye uptake resulted the largest in the BTCA solutions which have four carboxylic groups in the molecular unit. The optimal dyeing temperature a of Chelidonium majus extracts onto polycarboxylic acid treated cotton fabrics were $60^{\circ}C$. The dye equilibrium was reached 20 minutes after dyeing. Neutral pH of dye solutions showed in higher K/S value than acidic or alkaline conditions. But the colorfastness to washing and light according to polycarboxylic acid treat was not enhance.

  • PDF

Effects of the Surface Modification on the Dispersion of Carbon Nanotube (탄소나노튜브의 분산성에 미치는 표면개질의 영향)

  • Kim, Sung-Su;Kim, Hyung-Joong;Yoo, Youngjae;Lee, Sung-Goo;Choi, Kil-Yeong;Lee, Jae Heung
    • Journal of Adhesion and Interface
    • /
    • v.4 no.4
    • /
    • pp.22-27
    • /
    • 2003
  • Chemical modification of carbon nanotube (CNT) was carried out using $HNO_3$ and $H_2SO_4$ and characterized by analyzing the CNT before and after the modification using FT-IR and titration. Aggregation behaviors were investigated using a real-time video microscope after the chemically modified CNT(mCNT) had been dispersed in organic solvents such as toluene, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) by ultrasonication. The mCNT showed better dispersion in polar sovents of DMF and NMP than the rCNT. CNT/ poly(methylmethacrylate) (PMMA) films were prepared from solution DMF/PMMA solutions. The films containing mCNT also revealed the improved dispersion.

  • PDF