References
- B. Scrosati, 'Applications of Electroactive Polymers', Chapman & Hall, London (1993)
- Y. K. Jun and H. K. Seong, 'Ionic conduction behavior of network polymer electrolytes based on phosphate and polyether copolymers', Solid State Ionics, 124, 91 (1999) https://doi.org/10.1016/S0167-2738(99)00104-6
- A. R. Blythe, 'Electrical Properties of Polymers', Cambridge Univ. Press, New York (1979)
- F. M. Gray, 'Solid Polymer Electrolytes; Fundamentals and Technological Applications', VCH publishers, New York (1991)
- G. Harsanyi, 'Polymer Films in Sensor Applications', Tecnnomic publishing, Lancaster, USA (1995)
- A. J. Appleby and F. R. Foules, 'Fuel Cell Handbook', Van Nostrand Reinhold, New York (1989)
- O. Savadogo, 'Emerging Membranes for Electrochemical Systems: (I) Solid Polymer Electrolyte Membranes for Fuel Cell Systems', J. New Mater. Electrochem. Syst., 1, 47 (1998)
- M. Eikerling, Yu. I. Kharkats, A. A. Kornyshev, and M. Yu, Volfkovich, 'Phenomenological theory of electroosmotic effect and water management in polymer electrolyte proton-conducting membranes', J. Electrochem. Soc., 145, 2648 (1998) https://doi.org/10.1149/1.1838694
- 유민철, 장봉준, 김정훈, 이수복, 이용택 '연료전지를 위한 술폰화된 Perfluorocyclobutyl Biphenylene 고분자 전해질막', Membrane Journal, 15, 355 (2005)
- 이영무, 박호범, '직접 메탄올 연료전지용 고분자 전해질 분리막 소재의 개발', Membrane Journal, 10, 103 (2000)
- J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, 'Membranes from sulfonated block copolymers for use in fuel cells', Separation and Purification Technology, 41, 207 (2005) https://doi.org/10.1016/j.seppur.2004.07.018
- 이창현, 손준용, 박호범, 이영무, '에스테르기를 도입한 술폰화 프탈계 폴리이미드와 나프탈렌계 폴리이미드의 수화안정성에 관한 연구', Membrane Journal, 13, 110 (2003)
- C. H. Lee, H. B. Park, Y. S. Chung, Y. M. Lee, and Benny D. Freeman, 'Water Sorption, Proton conduction, and Methanol Permeation Properties of Sulfonated Polyimide Membranes Cross-Linked with N,N-Bis(2-hydroxyethyl)-2-2aminoethanesulfonic Acid (BES)', Macromolecules, 39, 755 (2006) https://doi.org/10.1021/ma052226y
- J. Fang, X. Guo, S. Harada, T. Wateri, K. Tanaka, H. Kita, and K. Okamoto, 'Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4,4'-Diaminodi-phenyl Ether-2,2'-disulfonic Acid', Macromolecules, 35, 9022 (2002) https://doi.org/10.1021/ma020005b
- J. McMurry, 'Organic chemistry', Brooks/Cole publishing company, A Division of Wadsworth, Inc. 3rd ed., 560 (1992)
- W. R. Bowen, N. Hilal, R. Lovitt, and P. Williams, 'Atomic Force Microscope Studies of Membranes: Surface Pore Structures of Diaflo Ultrafiltration Membranes', J. Colloid Interface Sci., 180, 350 (1996)
- W. R. Bowen, N. Hilal, R. Lovitt, and P. Williams, 'Visualisation of an ultrafiltration membrane by non-contact atomic force microscopy at single pore resolution', J. Membr. Sci., 110, 229 (1996) https://doi.org/10.1016/0376-7388(95)00262-6
- W. R. Bowen and T. Doneva, 'Atomic force microscopy studies of nanofiltration membranes: surface morphology, pore size distribution and adhesion', Desalination, 129, 163 (2000) https://doi.org/10.1016/S0011-9164(00)00058-8
- A. Bessieres, M. Meireles, R. Coratger, J. Beauvillain, and V. Sanchez, 'Investigations of surface properties of polymeric membranes by near field microscopy', J. Membr. Sci., 109, 271 (1996) https://doi.org/10.1016/0376-7388(95)00209-X
- S. Singh, K. C. Khulbe, T. Matsuura, and P. Ramamurthy, 'Membrane characterization by solute transport and atomic force microscopy', J. Membr. Sci., 142, 111 (1998) https://doi.org/10.1016/S0376-7388(97)00329-3
- N. A. Ochoa, P. Pradanos, L. Palacio, C. Pagliero, J. Marchese, and A. Hernandez, 'Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes: Characterisation of polyethersulfone UF membranes with dopes containing different PVP', J. Membr. Sci., 187, 227 (2001) https://doi.org/10.1016/S0376-7388(01)00348-9
- Yexin Xu, Cuixian Chen, Pengxia Zhang, Benhui Sun, and Jiding Li, 'Pervaporation Properties of Polyimide Membranes for Separation of Ethanol + Water Mixtures', J. Chem. Eng. Data, 51, 1841 (2006) https://doi.org/10.1021/je060208l
- E. Sacher and J. R. Susko, 'Water permeation of polymer films. I. Polyimide', J. Appl. Polym. Sci. 23, 2355 (2003) https://doi.org/10.1002/app.1979.070230813
- T. J. F. Day, U. W. Schmitt, and G. A. Voth, 'The Mechanism of Hydrated Proton Transport in Water', J. Am. Chem. Soc., 122, 12027 (2000)
- M. Eikerling, A. A. Kornyshev, A. M. Kuznetsov, J. Ulstrup, and S. Walbran, 'Mechanisms of Proton Conductance in Polymer Electrolyte Membranes', J. Phys. Chem. B, 105, 3646 (2001) https://doi.org/10.1021/jp003182s
- A. A. Kornshev, A. M. Kuznetsov, and E. Spohr, J. Ulstrup, 'Kinetics of Proton Transport in Water', J. Phys. Chem. B, 107, 3351 (2003) https://doi.org/10.1021/jp020857d
- E. Spohr, P. Commer, and A. A. Kornyshev, 'Enhancing Proton Mobility in Polymer Electrolyte Membranes: Lessons from Molecular Dynamics Simulations', J. Phys. Chem. B, 106, 10560 (2002)
- J. O. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I. H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, 'Fixation of Nanosized Proton Transport Channels in Membranes', Macromolecules, 36, 3228 (2003) https://doi.org/10.1021/ma034014b
- T. A. Zawodzinski, M. Neeman, L. O. Sillerud, and S. Gottesfeld, 'Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes', J. Phys. Chem., 95, 6040 (1991) https://doi.org/10.1021/j100168a060
- H. B. Park, C. H. Lee, Y. M. Lee, B. D. Freeman, and H. J. Kim, 'Effect of Crosslinked Chain Length in Sulfonated Polyimide Membranes on Water Sorption, Proton Conduction, and Methanol Permeation Properties', J. Membr. Sci. in Press (2004)
- C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, and M. Pineri, 'Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium', Polymer, 42, 5097 (2001) https://doi.org/10.1016/S0032-3861(00)00645-5
- X. Guo, J. Fang, T. Wateri, K. Tanaka, H. Kita, and K. Okamoto, 'Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 2. Synthesis and Proton Conductivity of Polyimides from 9,9-Bis(4-aminophenyl)fluorene-2,7-disulfonic Acid', Macromolecules, 35, 6707 (2002) https://doi.org/10.1021/ma020260w
- Y. Yin, J. Fang, Y. Cui, K. Tanaka, H. Kita, and K. Okamoto, 'Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from 3-(2',4'-diaminophenoxy)propane sulfonic acid', Polymer, 44, 4509 (2003) https://doi.org/10.1016/S0032-3861(03)00439-7
- T. Watari, J. Fang, K. Tanaka, H. Kita, and K. Okamoto, 'T. Hirano, Synthesis, water stability and proton conductivity of novel sulfonated polyimides from 4,4'-bis(4-aminophenoxy)biphenyl-3,3'-disulfonic acid', J. Membr. Sci., 230, 111 (2004) https://doi.org/10.1016/j.memsci.2003.10.037
- J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, and Y. M. Lee, 'Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes', J. Membr. Sci., 238, 143 (2004) https://doi.org/10.1016/j.memsci.2004.03.030
- B. Smitha, S. Sridhar, and A. A. Khan, 'Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells', Macromolecules, 37, 2233 (2004) https://doi.org/10.1021/ma0355913