Preparation and Characterization of Crosslinked Block and Random Sulfonated Polyimide Membranes for Fuel Cell

블록 및 랜덤 가교 술폰화 폴리이미드막의 제조 및 연료전지특성 평가

  • Lee, Young-Moo (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Park, Chi-Hoon (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Lee, Chang-Hyun (School of Chemical Engineering, College of Engineering, Hanyang University) ;
  • Chung, Youn-Suk (School of Chemical Engineering, College of Engineering, Hanyang University)
  • 이영무 (한양대학교 응용화학공학부) ;
  • 박치훈 (한양대학교 응용화학공학부) ;
  • 이창현 (한양대학교 응용화학공학부) ;
  • 정연석 (한양대학교 응용화학공학부)
  • Published : 2006.12.31

Abstract

In this study, crosslinked copolyimides with random (r-) and block (b-) structure were fabricated using N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid and pentanediol as crosslinkers. Linear r- and b-sulfonated copolyimides were also fabricated for comparison. Ion exchange capacities of r- and b-copolyimides were very similar to each other owing to their strong dependence of sulfonic acid content. The physical crosslinking via dimerization of carboxylic acid groups induced a reduced average interchain distance in b-copolyimide without crosslinkers. Consequently, its water uptake and methanol permeability were lower than those of r-sulfonated copolyimides. Simultaneously, the reduced interchain distance increased the content of fixed-charged ions per unit volume. The high fixed-charged ion density contributed to an enhancement of proton conductivity In the b-sulfonated copolyimide. Crosslinking caused the reduction of average interchain distance between polymer chains irrespective of types of crosslinker and polymer structure, leading to low methanol permeability. On the contrary, their proton conductivity was improved owing to formation of effective hydrophilic channels responsible for proton conduction. In particular, this trend was observed in r-copolyimide containing a fixed charged ion.

본 연구에서, 랜덤(r-) 및 블록(b-) 구조를 가지는 가교 공중합 폴리이미드를 N,N-bis(2-hyoxyethyl)-2-aminoethanesulfonic acid와 pentanediol을 가교제로 사용하여 제조하였다. 비교를 위하여 가교되지 않은 r- 과 b- 술폰화 공중합 폴리이미드도 제조하였다. 술폰산기의 조성에 강한 의존성을 보이는 이온교환능 값은 r- 과 b- 술폰화 공중합 폴리이미드에서 서로 비슷한 경향을 나타냈다. 카르복실산 기의 dimerization을 통한 물리적 가교현상은, 가교되지 않은 b- 술폰화 공중합 폴리이미드 고분자의 평균 사슬 거리를 감소시켰으며, 결과적으로 함수율과 메탄올 투과도를 r- 술폰화 공중합 폴리이미드보다 감소시켰다. 동시에, 고분자의 평균 사슬 거리의 감소는 단위 부피당 fixed-charged 이온의 함량을 증가시켰고, 이렇게 높아진 liked-charged 이온 밀도는 b- 술폰화 공중합 폴리이미드의 수소이온 전도도의 향상에 기여하였다. 가교제 및 고분자 구조에 상관없이, 가교구조의 도입은 고분자 사슬간의 평균 거리를 감소시켰고, 메탄올 투과도를 낮추었다. 반면에, 수소이온 전도도는 향상되는 경향을 나타내었는데, 이는 수소이온의 전달을 담당하는 친수성 채널이 효과적으로 형성 될 수 있기 때문이다. 특히, 이러한 경향은 술폰산기를 가진 가교제로 가교된, r- 술폰화 공중합 플리이미드에서 뚜렷하게 나타났다.

Keywords

References

  1. B. Scrosati, 'Applications of Electroactive Polymers', Chapman & Hall, London (1993)
  2. Y. K. Jun and H. K. Seong, 'Ionic conduction behavior of network polymer electrolytes based on phosphate and polyether copolymers', Solid State Ionics, 124, 91 (1999) https://doi.org/10.1016/S0167-2738(99)00104-6
  3. A. R. Blythe, 'Electrical Properties of Polymers', Cambridge Univ. Press, New York (1979)
  4. F. M. Gray, 'Solid Polymer Electrolytes; Fundamentals and Technological Applications', VCH publishers, New York (1991)
  5. G. Harsanyi, 'Polymer Films in Sensor Applications', Tecnnomic publishing, Lancaster, USA (1995)
  6. A. J. Appleby and F. R. Foules, 'Fuel Cell Handbook', Van Nostrand Reinhold, New York (1989)
  7. O. Savadogo, 'Emerging Membranes for Electrochemical Systems: (I) Solid Polymer Electrolyte Membranes for Fuel Cell Systems', J. New Mater. Electrochem. Syst., 1, 47 (1998)
  8. M. Eikerling, Yu. I. Kharkats, A. A. Kornyshev, and M. Yu, Volfkovich, 'Phenomenological theory of electroosmotic effect and water management in polymer electrolyte proton-conducting membranes', J. Electrochem. Soc., 145, 2648 (1998) https://doi.org/10.1149/1.1838694
  9. 유민철, 장봉준, 김정훈, 이수복, 이용택 '연료전지를 위한 술폰화된 Perfluorocyclobutyl Biphenylene 고분자 전해질막', Membrane Journal, 15, 355 (2005)
  10. 이영무, 박호범, '직접 메탄올 연료전지용 고분자 전해질 분리막 소재의 개발', Membrane Journal, 10, 103 (2000)
  11. J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann, 'Membranes from sulfonated block copolymers for use in fuel cells', Separation and Purification Technology, 41, 207 (2005) https://doi.org/10.1016/j.seppur.2004.07.018
  12. 이창현, 손준용, 박호범, 이영무, '에스테르기를 도입한 술폰화 프탈계 폴리이미드와 나프탈렌계 폴리이미드의 수화안정성에 관한 연구', Membrane Journal, 13, 110 (2003)
  13. C. H. Lee, H. B. Park, Y. S. Chung, Y. M. Lee, and Benny D. Freeman, 'Water Sorption, Proton conduction, and Methanol Permeation Properties of Sulfonated Polyimide Membranes Cross-Linked with N,N-Bis(2-hydroxyethyl)-2-2aminoethanesulfonic Acid (BES)', Macromolecules, 39, 755 (2006) https://doi.org/10.1021/ma052226y
  14. J. Fang, X. Guo, S. Harada, T. Wateri, K. Tanaka, H. Kita, and K. Okamoto, 'Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 1. Synthesis, Proton Conductivity, and Water Stability of Polyimides from 4,4'-Diaminodi-phenyl Ether-2,2'-disulfonic Acid', Macromolecules, 35, 9022 (2002) https://doi.org/10.1021/ma020005b
  15. J. McMurry, 'Organic chemistry', Brooks/Cole publishing company, A Division of Wadsworth, Inc. 3rd ed., 560 (1992)
  16. W. R. Bowen, N. Hilal, R. Lovitt, and P. Williams, 'Atomic Force Microscope Studies of Membranes: Surface Pore Structures of Diaflo Ultrafiltration Membranes', J. Colloid Interface Sci., 180, 350 (1996)
  17. W. R. Bowen, N. Hilal, R. Lovitt, and P. Williams, 'Visualisation of an ultrafiltration membrane by non-contact atomic force microscopy at single pore resolution', J. Membr. Sci., 110, 229 (1996) https://doi.org/10.1016/0376-7388(95)00262-6
  18. W. R. Bowen and T. Doneva, 'Atomic force microscopy studies of nanofiltration membranes: surface morphology, pore size distribution and adhesion', Desalination, 129, 163 (2000) https://doi.org/10.1016/S0011-9164(00)00058-8
  19. A. Bessieres, M. Meireles, R. Coratger, J. Beauvillain, and V. Sanchez, 'Investigations of surface properties of polymeric membranes by near field microscopy', J. Membr. Sci., 109, 271 (1996) https://doi.org/10.1016/0376-7388(95)00209-X
  20. S. Singh, K. C. Khulbe, T. Matsuura, and P. Ramamurthy, 'Membrane characterization by solute transport and atomic force microscopy', J. Membr. Sci., 142, 111 (1998) https://doi.org/10.1016/S0376-7388(97)00329-3
  21. N. A. Ochoa, P. Pradanos, L. Palacio, C. Pagliero, J. Marchese, and A. Hernandez, 'Pore size distributions based on AFM imaging and retention of multidisperse polymer solutes: Characterisation of polyethersulfone UF membranes with dopes containing different PVP', J. Membr. Sci., 187, 227 (2001) https://doi.org/10.1016/S0376-7388(01)00348-9
  22. Yexin Xu, Cuixian Chen, Pengxia Zhang, Benhui Sun, and Jiding Li, 'Pervaporation Properties of Polyimide Membranes for Separation of Ethanol + Water Mixtures', J. Chem. Eng. Data, 51, 1841 (2006) https://doi.org/10.1021/je060208l
  23. E. Sacher and J. R. Susko, 'Water permeation of polymer films. I. Polyimide', J. Appl. Polym. Sci. 23, 2355 (2003) https://doi.org/10.1002/app.1979.070230813
  24. T. J. F. Day, U. W. Schmitt, and G. A. Voth, 'The Mechanism of Hydrated Proton Transport in Water', J. Am. Chem. Soc., 122, 12027 (2000)
  25. M. Eikerling, A. A. Kornyshev, A. M. Kuznetsov, J. Ulstrup, and S. Walbran, 'Mechanisms of Proton Conductance in Polymer Electrolyte Membranes', J. Phys. Chem. B, 105, 3646 (2001) https://doi.org/10.1021/jp003182s
  26. A. A. Kornshev, A. M. Kuznetsov, and E. Spohr, J. Ulstrup, 'Kinetics of Proton Transport in Water', J. Phys. Chem. B, 107, 3351 (2003) https://doi.org/10.1021/jp020857d
  27. E. Spohr, P. Commer, and A. A. Kornyshev, 'Enhancing Proton Mobility in Polymer Electrolyte Membranes: Lessons from Molecular Dynamics Simulations', J. Phys. Chem. B, 106, 10560 (2002)
  28. J. O. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I. H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, 'Fixation of Nanosized Proton Transport Channels in Membranes', Macromolecules, 36, 3228 (2003) https://doi.org/10.1021/ma034014b
  29. T. A. Zawodzinski, M. Neeman, L. O. Sillerud, and S. Gottesfeld, 'Determination of water diffusion coefficients in perfluorosulfonate ionomeric membranes', J. Phys. Chem., 95, 6040 (1991) https://doi.org/10.1021/j100168a060
  30. H. B. Park, C. H. Lee, Y. M. Lee, B. D. Freeman, and H. J. Kim, 'Effect of Crosslinked Chain Length in Sulfonated Polyimide Membranes on Water Sorption, Proton Conduction, and Methanol Permeation Properties', J. Membr. Sci. in Press (2004)
  31. C. Genies, R. Mercier, B. Sillion, R. Petiaud, N. Cornet, G. Gebel, and M. Pineri, 'Stability study of sulfonated phthalic and naphthalenic polyimide structures in aqueous medium', Polymer, 42, 5097 (2001) https://doi.org/10.1016/S0032-3861(00)00645-5
  32. X. Guo, J. Fang, T. Wateri, K. Tanaka, H. Kita, and K. Okamoto, 'Novel Sulfonated Polyimides as Polyelectrolytes for Fuel Cell Application. 2. Synthesis and Proton Conductivity of Polyimides from 9,9-Bis(4-aminophenyl)fluorene-2,7-disulfonic Acid', Macromolecules, 35, 6707 (2002) https://doi.org/10.1021/ma020260w
  33. Y. Yin, J. Fang, Y. Cui, K. Tanaka, H. Kita, and K. Okamoto, 'Synthesis, proton conductivity and methanol permeability of a novel sulfonated polyimide from 3-(2',4'-diaminophenoxy)propane sulfonic acid', Polymer, 44, 4509 (2003) https://doi.org/10.1016/S0032-3861(03)00439-7
  34. T. Watari, J. Fang, K. Tanaka, H. Kita, and K. Okamoto, 'T. Hirano, Synthesis, water stability and proton conductivity of novel sulfonated polyimides from 4,4'-bis(4-aminophenoxy)biphenyl-3,3'-disulfonic acid', J. Membr. Sci., 230, 111 (2004) https://doi.org/10.1016/j.memsci.2003.10.037
  35. J. W. Rhim, H. B. Park, C. S. Lee, J. H. Jun, D. S. Kim, and Y. M. Lee, 'Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes', J. Membr. Sci., 238, 143 (2004) https://doi.org/10.1016/j.memsci.2004.03.030
  36. B. Smitha, S. Sridhar, and A. A. Khan, 'Polyelectrolyte Complexes of Chitosan and Poly(acrylic acid) As Proton Exchange Membranes for Fuel Cells', Macromolecules, 37, 2233 (2004) https://doi.org/10.1021/ma0355913