• Title/Summary/Keyword: 폴리에틸렌 섬유

Search Result 142, Processing Time 0.028 seconds

Studies on the Draw Resonance in the Melt Spinning of polypropylene/Polyethylene Blends -Rheological Properties and Draw Resonance of Polypropylene/Polyethylene Blends - (폴리프로필렌/폴리에틸렌 혼합물의 용융방사에 있어서 연신공명에 관한 연구 -폴리 프로필렌/폴리에틸렌 혼합물의 유변학적 특성과 연신공명 -)

  • 김상용
    • The Korean Journal of Rheology
    • /
    • v.4 no.2
    • /
    • pp.148-160
    • /
    • 1992
  • 폴리프로필렌(PP)과 폴리에틸렌(PE)혼합물의 용융방사에 있어서 불안정성을 연구하 였으며 혼합물의 유변학적 성질, 혼합물의 형태학적 특성과 연신공명과의 관계를 고찰한 것 이다. 신장점도는 spinline rheometer를 사용하여 측정하여 섬유직경은 광센서를 이용하여 방사공정에서 on-line 측정하였고 연신공명의 주기는 Fourier 변환을 이용하여 분석하였다. PP와 PE혼합물의 용융방사에 있어서 PP 함유량이 많을수록 연신공명이 발생하는 임계연신 비가 줄어들고 그 주기는 길어진다. 정상상태에서 구한 유변학적 성질을 이용하여 Shah와 Pearson의 이론식과 Fisher와 Denn의 이론식으로부터 구한 임계연신비값이 실험치와 많은 차이를 보여주었다. 연신공명에 의하여 형성된 섬유의 가는 부분의 배향도는 굵은 부분에 비하여 크게 향상되었으며 PP 함유량이 많을수록 배향도가 크게 증가하였다.

  • PDF

Material Strength and Deformation Performance of Highly Ductile High-Strength Cement Composite (높은 연성을 갖는 고강도 시멘트계 복합체의 재료강도 및 변형성능)

  • Choi, Jeong-Il;Lee, Bang Yeon;Kim, Yun Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.51-58
    • /
    • 2020
  • The purpose of this study is to investigate experimentally the material strength and tensile deformation behavior of highly ductile high-strength cement composites reinforced by synthetic fibers. Materials and mixture proportions were designed to make composites with a strength level of 80 MPa in compression. Two kinds of polyethylene fibers with different properties were employed as reinforcing fibers. A series of experiments on density, compressive strength, and deformation performance was performed. Experimental results showed that the tensile behavior and cracking patterns of cement composite strongly depends on the types of reinforcing fibers. It was also demonstrated that the cement composite with a compressive strength of 77.7 MPa and a tensile strain capacity of 7.9% can be manufactured by using a proper polyethylene fiber.

Properties of Conductive Polymer Composite Films Fabricated under High Intensity Electric Fields : Effect of CF Sizing Treatment (고전기장을 이용한 전도성 고분자 복합필름의 제조 및 특성 연구 : 탄소섬유 Sizing처리가 탄소섬유/폴리에틸렌 필름의 특성에 미치는 영향)

  • 고현협;김중현;임순호;김준경;최철림
    • Polymer(Korea)
    • /
    • v.25 no.2
    • /
    • pp.293-301
    • /
    • 2001
  • Electrically conductive carbon fiber/high density polyethylene (CF/HDPE) composite films were fabricated by new method, so called electron-ion technology (EIT) and the effects of CF epoxy sizing on the volumetric resistivity. tensile strength and interphase properties of the films were investigated. While epoxy sizing increased conductivity of composite films resulting from enhanced tunneling effect it reduced interphase adhesion between CF and HDPE because polar epoxy sizing and nonpolar HDPE are incompatible. Consequently epoxy sized CF(CF(S)) caused significant reduction in the volumetric resisitivity and tensile strength of composite films when compared with unsized CF(CF(U)). Epoxy sizing reduced nucleating efficiency of CF(S), therefore CF(S)/HDPE composite films showed nonuniform transcrystalline layer when compared with CF(U)/HDPE composite films.

  • PDF

Engineering Property of Basalt Fiber as a Reinforcing Fiber (보강 섬유로서 현무암 섬유의 공학적 특성)

  • Choi, Jeong-Il;Jang, Yu-Hyun;Lee, Jae-Won;Lee, Bang-Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.84-89
    • /
    • 2015
  • Basalt fiber has many advantages as a reinforcing fiber such as high tensile strength and similar density to concrete. This study investigated the bonding property and the effect of fiber orientation on tensile strength of basalt fiber. Single fiber pullout tests for basalt and polyvinyl alcohol (PVA) fibers were performed to evaluate the bonding property between basalt fiber and mortar. And then tensile strength of basalt, PVA, and polyethylene (PE) fibers according to fiber orientation were measured. From the test results, it was exhibited that the chemical bond, frictional bond, and slip-hardening coefficient of basalt fiber were 1.88, 1.03, 0.24 times of PVA fibers, respectively. And the strength reduction coefficient of basalt fiber was 9 times of PVA fiber and 3 times of PE fiber.

RESTORATION OF MAXILLARY PRIMARY INCISORS USING POLYETHYLENE FIBER-REINFORCED POST (폴리에틸렌 섬유 강화형 포스트를 이용한 상악 유전치의 수복)

  • Yun, Hyo-Jin;Park, Ho-Won;Lee, Ju-Hyun;Seo, Hyun-Woo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.4
    • /
    • pp.526-531
    • /
    • 2010
  • Early childhood caries which mainly affect maxillary anterior area, defined as 'the presence of 1 or more decayed, missing, or filled tooth surfaces in any primary tooth in a child 71 months of age or younger'. Extraction of teeth when early childhood caries affected in maxillary primary incisors often develops progressively, result in severe destruction of crowns, acute or chronic pulpitis, and periapical abscess formation. Maxillary primary incisors are need to preserve as possible, because the early loss of maxillary primary incisors may lead to various functional, esthetical, and psychological problems. It is necessary to the availability of an easy to perform technique capable of providing efficient, durable, functional, and esthetic restorative methods. Polyethylene fiber-reinforced post can be used in strengthen of composite resins that is esthetic and good physical and mechanical properties. $Ribbond^{(R)}$ is made from an polyethylene fiber, has numerous usages, its surface is treated to enhance adhesion to resins, ease of manipulation, relatively cost effective. We report this case, had restored of maxillary primary incisors with severe coronal destruction due to affecting severe early childhood caries, using polyethylene fiber-reinforced posts, composite resin cores, and celluloid crowns. We could obtain good result of treatment.