• Title/Summary/Keyword: 폴리머 필름

Search Result 329, Processing Time 0.033 seconds

Wearable touch sensor array integrated with energy harvester (인체 착용을 위한 압전에너지 융합형 촉각센서 어레이)

  • Park, Jiwook;Ahn, Yongho;Yun, Kwang-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1221-1222
    • /
    • 2015
  • 본 연구에서는 촉각 센서와 에너지 수확소자가 한 소자에 융합되어있는 구조를 제안한다. 이 소자는 압전 스트랩과 유연한 튜브, 폴리머 필름으로 구성되어있으며, 유연하며 잘 늘어나는 직물구조를 갖는다. 완성된 소자에 수평방향의 인장 및 수축 힘이 가해지면 전압이 발생하여 에너지 수확소자로 동작하며, 수직방향의 힘이 가해지면 정전용량이 변화하여 촉각센서로 동작한다. 제작한 소자가 에너지 수확소자로 동작할 때 최대 36.6 V의 출력 전압이 측정되었으며, 소자를 누르는 수직힘이 증가할수록 정전용량이 커지는 것을 확인하였다.

  • PDF

Studies on the Mass-production System for Making Biodegradable Film Based on Chitosan/gelatin Blend (키토산/젤라틴 블랜드 폴리머를 이용한 생분해성 필름의 대량생산 시스템에 관한 기초 연구)

  • Kim, Byung-Ho;Park, Jang-Woo;Woo, Moon-Jea
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.12 no.2
    • /
    • pp.117-123
    • /
    • 2006
  • To mass-product useful biopolymer films, chitosan/gelatin blend films were prepared by solution casting method. Effect of mixing ratio, tensile strength(TS), elongation(${\Delta}E$) at break, total color difference(E), water vapor permeability(WVP) and oxygen permeability(OP) on chitosan/gelatin blend films properties were investigated. TS, ${\Delta}E$, E, WVP and OP values of chitosan/gelatin blend films were 43.43-38.30 MPa, 9.02-15.09%, 1.28-3.81, $0.8420-0.9673ng{\cdot}m/m^2{\cdot}s{\cdot}Pa$ and $1.5472{\times}10^{-7}-1.5424{\times}10^{-7}mL{\cdot}{\mu}m/m^2{\cdot}s{\cdot}Pa$, respectively. TS of the blend films decreased, while E and E of the blend films increased with increasing chitosan content. WVP and OP of the blend films did not show any significant relationship with mixing ratio and thickness of the blend films. OP of the blend films were lower than those of low density polyethylene and oriented polypropylene.

  • PDF

Corrosion-Inhibition and Durability of Polymer-Modified Mortars Using Bisphenol A and F Type Epoxy Resin with Calumite (비스페놀 A 및 F형 에폭시수지와 칼루마이트를 병용한 폴리머 시멘트 모르타르의 방청성 및 내구성)

  • Kim, Joo-Young;Kim, Wan-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.517-524
    • /
    • 2014
  • Nitrite-Type hydrocalumite (calumite) is a material that can adsorb chloride ions ($Cl^-$) that cause corrosion of reinforce bars and liberate the nitrite ions ($NO_2{^-}$) that inhibit corrosion in reinforced concrete. In this study, polymer-modified mortars using two types of epoxy resin with calumite are prepared with various polymer binder-ratios of 0, 5, 10, 15, 20% and calumite contents of 0, 5%. The specimens are tested for chloride ion penetration, carbonation, drying shrinkage and corrosion inhibition. As a result, the chloride ion penetration and carbonation depth of PMM using epoxy resin somewhat increases with increasing calumite contents, but those remarkably decreases depending on the polymer-binder ratios. The 28-d drying shrinkage shows a tendency to decrease with increasing polymer-binder ratio and calumite content. Unmodified mortars with calumite content of 5% did not satisfy quality requirement by KS. However, it was satisfied with KS requirement by the modification of epoxy resin in cement mortar. On the whole, the carbonation and chloride ion penetration depth of epoxy-modified mortars with calumite is considerably improved with an increase in the polymer-binder ratio regardless of the calumite content, and is remarkably improved over unmodified mortar. And, the replacement of the portland cement with the calumite has a marked effect in the corrosion-inhibiting property of the epoxy-modified mortars.

Corrosion-Inhibition and Durability of Polymer-Modified Mortars Using Redispersible Polymer Powder with Nitrite-Type Hydrocalumite (재유화형 분말수지와 아질산형 하이드로칼루마이트를 병용한 폴리머 시멘트 모르타르의 방청성 및 내구성)

  • Kim, Wan-Ki;Hong, Sun-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Nitrite-type hydrocalumite (calumite) is a material that can adsorb the chloride ions ($Cl^-$)that cause the corrosion of reinforcing bars and liberate the nitrite ions ($NO_2{^-}$) that inhibit corrosion in reinforced concrete, and can provide a self-corrosion inhibition function to the reinforced concrete. In this study, VA/E/MMA-modified mortars with calumite were prepared with various calumite contents and polymer binder-ratios, and tested for corrosion inhibition, chloride ion penetration, carbonation and drying shrinkage. As a result, regardless of polymer-binder ratio, the replacement of ordinary Portland cement with hydrocalumite has a marked effect on the corrosion inhibiting property of the polymer-modified mortars. However, chloride ion penetration and carbonation depths are somewhat increased with higher calumite content, but can be remarkably decreased depending on the polymer-binder ratios. The 28-d drying shrinkage shows a tendency to increase with the polymer-binder ratio and calumite content. VA/E/MMA-Modified mortars with 10 % calumite did not satisfy KS requirements. Accordingly, a calumite content of 5 % is recommended for the VA/E/MMA-modified mortars with calumite.

Adhesion Characteristics between Mold and Thermoplastic Polymer Film in Thermal Nanoimprint Lithography (열 나노임프린트 리소그래피에서의 몰드와 열가소성 폴리머 필름 사이의 응착 특성)

  • Kim, Kwang-Seop;Kang, Ji-Hoon;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.24 no.5
    • /
    • pp.255-263
    • /
    • 2008
  • Adhesion tests were conducted to investigate the adhesion characteristics between mold and thermoplastic polymer film. Coating of anti-sticking layer (ASL), a kind of polymer material, imprint pressure, and separation velocity were considered as the process conditions. A piece of fused silica without patterns on its surface was used as a mold and the thermoplastic polymer films were made on Si substrate by spin-coating the commercial polymer solution such as mr-I PMMA and mr-I 7020. The ASL was derived from (1H, 1H, 2H, 2H - perfluorooctyl) trichlorosilane($F_{13}$-OTS) and coated on the fused silica mold in vapor phase. The pull-off force was measured in various process conditions and the surfaces of the mold and the polymer film were observed after separation. It was found that the adhesion characteristics between the mold and the thermoplastic polymer film and the release performance of ASL were changed according to the process conditions. The ASL was effective to reduce the pull-off force and the damage of polymer film. In cases of the mold coated with ASL, the pull-off force did not depend on imprint pressure and separation velocity.

Fluorescent Pattern Generation on the Fluorescent Photopolymer with 2-beam Coupling Method (2-beam Coupling 방법을 이용한 광 고분자 형광 패턴 형성)

  • Kim, Yoon-Jung;Kim, Jeong-Hun;Sim, Bo-Yeon;Lee, Myeong-Kyu;Kim, Eun-Kyoung
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.1
    • /
    • pp.6-11
    • /
    • 2010
  • Fluorescent photopolymer film was prepared with composition containing acrylate monomer, binder, a visible light sensitive photo initiator, and fluorescent anthracene polymer. A fluorescent grating pattern was inscribed on the photopolymer film using a 2-beam coupling method. A 514 nm laser was coupled to generate a beam-interference pattern. A highly fluorescent diffractive line pattern was formed on the fluorescent photopolymer within 30 sec. of exposure. The fluorescence intensity was highly enhanced in the patterned area, possibly due to the change in the environment of the fluorescent polymers by the photo-polymerization of monomers. Under a photo-mask, a gap electrode pattern was formed of fluorescent gratings with a sub-micron scale, which was matched well to the calculated value ($2.5\;{\mu}m$ and $0.6\;{\mu}m$) based on the refractive index of the photopolymer and beam incident angle ($3.4^{\circ}$, $15^{\circ}$) to the photopolymer surface.

Effect of Diamine Composition on Thermo-Mechanical Properties and Moisture Absorption of Polyimide Films (디아민 변화에 따른 폴리이미드 필름의 물리적 특성과 흡습률 분석)

  • Park, Yun-Jun;Yu, Duk-Man;Choi, Jong-Ho;Ahn, Jeong-Ho;Hong, Young-Taik
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.275-280
    • /
    • 2012
  • Poly(amic acid)s were successfully synthesized from 1,4-bis(4-aminophenoxy)benzene (1,4-APB) or 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane (HFBAPP) with pyromellitic dianhydride (PMDA), 3,3'-4,4'-benzopenonetetracarboxylic dianhydride (BPDA) and $p$-phenylenediamine ($p$-PDA) and then they were effectively converted into polyimide films by thermal imidization. The chemical structure and thermo-mechanical properties of polyimide films were examined using Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analyzer (TGA), thermo-mechanical analyzer, dynamic mechanical analyzer (DMA) and universal tensile machine (UTM). The moisture absorption, thermal and mechanical properties of polyimide films decreased with increasing the amount of 1,4-APB and HFBAPP. The polyimide films using HFBAPP showed lower properties than that of 1,4-APB at the same ratio, but it displayed better thermal properties and lower moisture absorption at the similar coefficient of thermal expansion (CTE) with a copper. On the basis of our finding, it is concluded that 4-component polyimide films could be utilized for base films for flexible copper clad laminates (FCCL) of flexible printed circuit boards.

Characterizations of Cellulose Blend Films: Morphology, Mechanical Property, and Gas Permeability (셀룰로오스 블렌드 필름의 특성연구 : 모폴로지, 기계적 성질, 및 가스 투과도)

  • Jang, Seo-Won;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.63-69
    • /
    • 2008
  • The mechanical properties and morphologies of cellulose blends with two different additives were compared. Poly (vinyl alcohol) (PVA) of ethylene glycol (EG) were used as additives in the formation of cellulose blends through the solution blending. The properties of blends were varied with the additive content in the polymer matrix. The ultimate tensile strength and initial modulus of the cellulose blends were highest for a blend PVA content of 30 wt% and for a blend EG content of 10 wt%, respectively. Ternary blended systems of composition of cellulose/PVA (70/30=w/w)/EG were also prepared by the solution blending method with different EG contents. The mechanical properties of these systems were found to be optimal for EG contents of up to 40 wt%. The mechanical properties of the cellulose ternary blend films were superior to those of the cellulose binary blend films. The oxygen permeability transmission rate ($O_2TR$) monotonically decreased with increasing EG content in the ternary blend films. Overall, the mechanical properties of the cellulose blend films were found to be better than those of pure cellulose films.

Characterizations of Lyocell and Its Blended Nanocomposite Film: Morphology and Mechanical Property (라이오셀 및 라이오셀 블렌드 나노복합체 필름의 특성 연구 : 모폴로지 및 기계적 성질)

  • Jang, Seo-Won;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.31 no.3
    • /
    • pp.221-227
    • /
    • 2007
  • The mechanical properties and morphologies of lyocell and its blend we compared. Poly (vinyl alcohol) (PVA) was used as a filler in blends with lyocell produced through solution blending. The variations of their properties with polymer matrix filler content are discussed. The ultimate tensile strength of the PVA/lyocell blend is highest for a blend lyocell content of 30 wt%, and decreases as the lyocell content is increased up to 40 wt%. The variations in the initial moduli of the blends with filler content are similar. Lyocell and its blended hybrid films were prepared by the solution intercalation method, using dodecyltriphenylphosphonium-mica ($C_{12}PPh$-Mica) as the organoclay. The variations of the mechanical tensile properties of the hybrids with the organoclay content were examined. These properties were found to be optimal for an organoclay content of up to 5 wt%. However, the mechanical tensile properties of the PVA/Lyocell (w/w=30/70) blended hybrid films were found to decrease linearly with increases in organoclay content from 1 to 5 wt%.

Studies on the Physical and Thermal Properties of the Chitosan/Gelatin Blend (키토산/젤라틴 블랜드 폴리머의 물리적 및 열적 특성에 대한 연구)

  • Kim, Byung-Ho;Park, Jang-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.30-37
    • /
    • 2005
  • To mass-produce useful biopolymer films, chitosan/gelatin blend films were prepared by solution casting method. Effects of mixing ratio, tensile strength (TS), elongation (E) at break, total color difference (${\Dalta}E$), opacity, water vapor permeability (WVP), oxygen permeability (OP), and thermal properties on chitosan/gelatin blend films properties were investigated. TS, E, ${\Dalta}E$, opacity, WVP, and OP values were 58.24-22.01 MPa, 13.11-24.67%, 1.86-17.45, 0.3104-1.2161 nmO.D./${\mu}m$, $1.6875-1.7225ng{\cdot}m/m^{2}{\cdot}s{\cdot}Pa$, and $2.2380{\times}10^{-7}-2.2975{\times}10^{-7}\;mL{\cdot}{\mu}m/m^{2}{\cdot}s{\cdot}Pa$, respectively. TS of blend films decreased, while E, ${\Dalta}E$, and opacity increased with increasing chitosan content. WVP of blend films did not show any significant relationship with mixing ratio and thickness of blend films. Miscibility of films was examined over entire composition range by thermogravimetric analyzer (TGA) and dynamic mechanical analyzer (DMA). TGA results showed gelatin is more thermally stable than chitosan and some interactions among functional groups of two biopolymers. Glass transition temperature $(T_{2})$ of films as determined by DMA decreased with increasing content of chitosan in the blend. Results of thermal analysis indicate high miscibility among polymer components in the blend.