DOI QR코드

DOI QR Code

Adhesion Characteristics between Mold and Thermoplastic Polymer Film in Thermal Nanoimprint Lithography

열 나노임프린트 리소그래피에서의 몰드와 열가소성 폴리머 필름 사이의 응착 특성

  • Kim, Kwang-Seop (School of Mechanical, Aerospace & Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kang, Ji-Hoon (R&D Group, Storage System Division, Semiconductor Business, Samsung Electronics Co., Ltd.) ;
  • Kim, Kyung-Woong (School of Mechanical, Aerospace & Systems Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 김광섭 (한국과학기술원 기계항공시스템학부) ;
  • 강지훈 (삼성전자(주) 반도체총괄 스토리지사업부) ;
  • 김경웅 (한국과학기술원 기계항공시스템학부)
  • Published : 2008.10.31

Abstract

Adhesion tests were conducted to investigate the adhesion characteristics between mold and thermoplastic polymer film. Coating of anti-sticking layer (ASL), a kind of polymer material, imprint pressure, and separation velocity were considered as the process conditions. A piece of fused silica without patterns on its surface was used as a mold and the thermoplastic polymer films were made on Si substrate by spin-coating the commercial polymer solution such as mr-I PMMA and mr-I 7020. The ASL was derived from (1H, 1H, 2H, 2H - perfluorooctyl) trichlorosilane($F_{13}$-OTS) and coated on the fused silica mold in vapor phase. The pull-off force was measured in various process conditions and the surfaces of the mold and the polymer film were observed after separation. It was found that the adhesion characteristics between the mold and the thermoplastic polymer film and the release performance of ASL were changed according to the process conditions. The ASL was effective to reduce the pull-off force and the damage of polymer film. In cases of the mold coated with ASL, the pull-off force did not depend on imprint pressure and separation velocity.

Keywords

References

  1. Chou, S. Y., Krauss, P. R., and Renstrom, P. J. 'Imprint of sub-25 nm Vias and Trenches in Polymers', Appl. Phys. Lett., Vol. 67, No. 21, pp. 3114-3116, 1995 https://doi.org/10.1063/1.114851
  2. Guo. L. J., 'Recent Progress in Nanoimprint Technology and its Applications', J. Phys. D:Appl. Phys., Vol. 37, pp. R123-R141, 2004 https://doi.org/10.1088/0022-3727/37/11/R01
  3. Macintyre, D. S., Chen, Y., Gourlay, D., Boyd, E., Moran, D., Cao, X., Elgaid, K., Stanley, C. R., Thayne, I., and Thoms, S., 'Nanoimprint Lithography Process Optimization for the Fabrication of High Electron Mobility Transistors', J. Vac. Sci. Technol. B, Vol. 21, No. 6, pp. 2783-2787, 2003 https://doi.org/10.1116/1.1629719
  4. Zhang, W. and Chou, S. Y., 'Fabrication of 60-nm Transistors on 4-in. Wafer Using Nanoimprint at All Lithography Levels', Appl. Phys. Lett., Vol. 83, No. 8, pp. 1632-1634, 2003 https://doi.org/10.1063/1.1600505
  5. Ye, P. D., Wilk, G. D., Tois, E. E., and Wang, J. J., 'Formation and Characterization of Nanometer Scale Metal-oxide-semiconductor Structures on GaAs Using Low-temperature Atomic Layer Deposition', Appl. Phys. Lett., Vol. 87, No. 1, pp. 13501-13503, 2005 https://doi.org/10.1063/1.1954902
  6. Puscasu, I., Boreman, G., Tiberio, R. C., Spencer, D., and Krchnavek, R. R., 'Comparison of Infrared Frequency Selective Surfaces Fabricated by Direct-write Electron-beam and Bilayer Nanoimprint Lithographies', J. Vac. Sci. Technol. B, Vol. 18, No. 6, pp. 3578-3581, 2000 https://doi.org/10.1116/1.1319838
  7. Ahn, S. W., Lee, K. D., Kim, D. H., and Lee, S. S., 'Polymeric Wavelength Filter Based on a Bragg Grating Using Nanoimprint Technique', IEEE Photon. Technol. Lett., Vol. 17, No. 10, pp. 2122-2124, 2005 https://doi.org/10.1109/LPT.2005.854404
  8. Arakcheeva E. M., Tanklevskaya E. M., Nesterov S. I., Maksimov M. V., Gurevich S. A., Seekamp J., and Torres C. M. S., 'Fabrication of Semiconductorand Polymer-based Photonic Crystals Using Nanoimprint Lithography', Tech. Phys., Vol. 50, No. 8, pp. 1043-1047, 2005 https://doi.org/10.1134/1.2014536
  9. Cheng, X., Hong, Y. T., Kanicki, J., and Guo, L. J., 'High-resolution Organic Polymer Light-emitting Pixels Fabricated by Imprinting Technique', J. Vac. Sci. Technol. B, Vol. 20, No. 6, pp. 2877-2880, 2002 https://doi.org/10.1116/1.1515307
  10. Kao, P. C., Chu, S. Y., Chen, T. Y., Zhan, C. Y., Hong, F. C., Chang, C. Y., Hsu, L. C., Liao, W. C., and Hon, M. H., 'Fabrication of Large-scaled Organic Light Emitting Devices on the Flexible Substrates Using Low-pressure Imprinting Lithography', Elec. Dev., IEEE Transactions, Vol. 52, No. 8 pp. 1722-1726, 2005 https://doi.org/10.1109/TED.2005.851811
  11. Ahn, S. W., Lee, K. D., Kim, J. S., Kim, S. H., Park, J. D., Lee, S. H., and Yoon, P. W., 'Fabrication of a 50 nm Half-pitch Wire Grid Polarizer Using Nanoimprint Lithography', Nanotechnology, Vol. 16, No. 9, pp. 1874-1877, 2005 https://doi.org/10.1088/0957-4484/16/9/076
  12. Ohtake, T., Nakamatsu, K. I., Matsui, S., Tabata, H., and Kawai, T., 'DNA Nanopatterning with Selforganization by Using Nanoimprint', J. Vac. Sci. Technol. B, Vol. 22, No. 6, pp. 3275-3278, 2004 https://doi.org/10.1116/1.1823438
  13. Bunk, R., Carlberg, P., Mansson, A., Nicholls, I. A., Omling, P., Sundberg, M., Tagerud, S., and Montelius, L., 'Guiding Molecular Motors with Nano-Imprinted Structures', Jap. J. Appl. Phys. part 1, Vol. 44, No. 5A, pp. 3337-3340, 2005 https://doi.org/10.1143/JJAP.44.3337
  14. Austin, M. D., Ge, H. X., Wu, W., Li, M. T., Yu, Z. N., Wasserman, D., Lyon, S. A., and Chou, S. Y., 'Fabrication of 5 nm Linewidth and 14 nm Pitch Features by Nanoimprint Lithography', Appl. Phys. Lett., Vol. 84, No. 26, pp. 5299-5301, 2004 https://doi.org/10.1063/1.1766071
  15. Hirai, Y., Yoshida, S., and Takagi, N., 'Defect Analysis in Thermal Nanoimprint Lithography', J. Vac. Sci. Technol. B, Vol. 21, No. 6, pp. 2765-2770, 2003 https://doi.org/10.1116/1.1629289
  16. Hirai, Y., Yoshida, S., Takagi, N., Tanaka, Y., Yabe, H., Sasaki, K., Sumitani, H., and Yamamoto, K., 'High Aspect Pattern Fabrication by Nano Imprint Lithography Using Fine Diamond Mold', Jap. J. Appl. Phys. Part 1, Vol. 42, pp. 3863-3866, 2003 https://doi.org/10.1143/JJAP.42.3863
  17. Jaszewski, R. W., Schift, H., Groning, P., and Margaritondo, G., 'Properties of Thin Anti-adhesive Films Used for the Replication of Microstructures in Polymers', Microelectron. Eng., Vol. 45, No. 1-4, pp. 381-384, 1997
  18. Beck, M., Graczyk, M., Maximov. I., Sarwe, E. L., T. G. I. Ling, Keil, M., and Montelius, L., 'Improving Stamps for 10 nm Level Wafer Scale Nanoimprint Lithography', Microelectron. Eng., Vol. 61-62, pp. 441-448, 2002 https://doi.org/10.1016/S0167-9317(02)00464-1
  19. Chen, J. K., Ko, F. H., Hsieh, K. F., Chou, C. T., and Chang, F. C., 'Effect of Fluoroalkyl Substituents on the Reactions of Alkylchlorosilanes with Mold Surfaces for Nanoimprint Lithography', J. Vac. Sci. Technol. B, Vol. 22, No. 6, pp. 3233-3241, 2004 https://doi.org/10.1116/1.1815305
  20. Schift, H., Saxer, S., Park, S. G., Padeste, C., Pieles, U., and Gobrecht, J., 'Controlled Co-evaporation of Silanes for Nanoimprint Stamps', Nanotechnology, Vol. 16, pp. S171-S175, 2005 https://doi.org/10.1088/0957-4484/16/5/007
  21. Park, S., Schift, H., Padeste, C., Schnyder, B., Kotz, R., and Gobrecht, J., 'Anti-adhesive Layers on Nickel Stamps for Nanoimprint Lithography', Microelectronic Eng., Vol. 73-74, pp. 196-201, 2004 https://doi.org/10.1016/S0167-9317(04)00098-X
  22. Tallal, J., Gordon, M., Berton, K., Charley, A. L., and Peyrade, D., 'AFM Characterization of Antisticking Layers Used in Nanoimprint', Microelectron. Eng., Vol. 83, pp. 851-854, 2006 https://doi.org/10.1016/j.mee.2006.01.011
  23. Ulman, A., 'Formation and Structure of Self-assembled Monolayers', Chem. Rev., Vol. 96, pp. 1533-1554, 1996 https://doi.org/10.1021/cr9502357
  24. Ja czuk, B., Bialopiotrowicz, T., and Zdziennicka, A., 'Some Remarks on the Components of the Liquid Surface Free Energy', J. Colloid. Interface Sci., Vol. 211, pp. 96-103, 1999 https://doi.org/10.1006/jcis.1998.5990
  25. Kasai, T., Bhushan, B., Kulik, G., Barbieri, L., and Hoffmann, P., 'Micro/nanotribological Study of Perfluorosilane SAMs for Antistiction and Low Wear', J. Vac. Sci. Technol. B, Vol. 23, No. 3, pp. 995-1003, 2005 https://doi.org/10.1116/1.1913674
  26. Jones, Richard A.L., and Richards, Randal W., Polymers at surfaces and interfaces, Cambridge University, pp. 293, 1999