• Title/Summary/Keyword: 폴리머 박막

Search Result 176, Processing Time 0.024 seconds

Safe Decomposition of the Vehicle Waste Battery Module and Development of Separation Process of Cathode Active Material from Aluminum Thin Film (자동차용 폐 리튬 이차전지 모듈의 안정적 해체와 알루미늄 박막으로부터 양극활물질의 분리공정 개발)

  • Kim, Younjung;Oh, In-Gyung;Hong, Yong Pyo;Ryoo, Keon Sang
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.440-445
    • /
    • 2019
  • It has developed a method that can recover efficiently the reproducible resources from the vehicle waste lithium second battery module. Module cell consists of copper thin film, aluminum thin film and diaphragm made with polymer between these thin films. Cell was disassembled completely without any damage in glove box and through several steps. Preferentially, cathode active material was separated from aluminum thin film at heat treatment of 400 ℃. The retrieved cathode active material was then obtained as high purity after calcining at 800 ℃ to remove residual carbon. Based on this study, it was found that rare metals such as Co, Ni, Mn and Li made up of cathode active material could recover above 80% from aluminum thin film.

Ultralow Dielectric Properties of $SiO_2$ Aerogel Thin Films (실리카 에어로겔 박막의 극저 유전특성)

  • 현상훈;김중정;김동준;조문호;박형호
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.314-322
    • /
    • 1997
  • The thin film processing and the applicability as a IMD material of SiO2 aerogels providing ultralow dielec-tric properties were studied. The SiO2 aerogel films with 0.5g/㎤ density (78% porosity) and 4000~21000$\AA$ thickness could be prepared at 25$0^{\circ}C$ and 1160 psig by supercritical drying of wet-gel films, which were spin-coated at the spin rate of 1000~7000 rpm on p-Si(111) wafer under the isopropanol atmosphere. The optimum viscosity of polymeric SiO2 sols for spin coating was in the range of 10~14 cP. The main fac-tors being able to control the film thickness and microstructures were found to be sol concentration, spin rpm, and aging time of wet-gel films. The dielectric constant of the SiO2 aerogel thin film was around 2.0 low enough to be applied to the next generation semiconductor device beyond the giga level.

  • PDF

Thermal and UV Curing of Vacuum Deposited Film of Acetylene Substituted Fluorenes (아세틸렌기가 치환된 플루오렌 증착박막의 열 및 자외선 경화)

  • 정상현;김정수;강영구;이창진
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.327-333
    • /
    • 2001
  • Acetylene substituted fluorenes such as 2-ethynylfluorene and 2,7-diethynyl-fluorene were synthesized and thin films were prepared by the vacuum deposition. Curing of these fluorene derivatives could be achieved by heat treatment and UV irradiation. The curing temperature of 2-ethynylfluorene and 2,7-diethynylfluorene were found to be 231 and $198^{\circ}C$, respectively. The cured poly(2-ethynylfluorene) and poly(2,7-diethynylfluorene) started to decompose at 280 and $ 385^{\circ}C$, respectively. Fluorescent characteristics of the cured films were similar to those of monomers, but fluorescent efficiency of the film was decreased about 3 to 10 fold.

  • PDF

Refractive Index Changes of Polymer Film by Photochemical Reactions (광반응에 의한 고분자 필름의 굴절률 변화)

  • 조정환;신미영;이종하;김성수;송기국
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.545-550
    • /
    • 2004
  • The refractive index of thin copolymer film was controlled by photo-degradation of chromophores in the copolymer. FTIR and UV/Vis spectroscopy were employed to elucidate the effect of chemical structure on refractive index changes after photobleaching. The decrease of refractive index of the film by photobleaching can be ascribed to the decrease of polarizability of polymer molecules through breakage of C =C bond in the chromophore. Due to the selective photoreaction of the chromophores which align along the film plane, refractive index of the copolymer film measured in TE mode decreases faster than that in TM mode. Polarized ATR-FTIR spectroscopy was used to verify such a difference in refractive index of the film.

Effect of Imidazole and Surfactant on the Opto-Electrical Properties of PEDOT Thin Films via Vapor Phase Polymerization (이미다졸과 계면활성제가 기상중합법으로 제조된 PEDOT 박막의 광-전기적 특성에 미치는 영향)

  • Khadka, Roshan;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.461-467
    • /
    • 2015
  • This paper reports the combined effects of the triblock copolymer surfactant poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG) and imidazole on the opto-electrical and mechanical properties of poly(3,4-ethylenedioxythiophene) (PEDOT)-based thin films prepared via vapor phase polymerization (VPP) using ferric p-toluenesulfonate as a catalyst. Various PEDOT-based thin films were synthesized using PEG-PPG-PEG and imidazole alone and in combination to compare and correlate their effects on film properties. The improved conductivity of the PEDOT films was higher than $1300S{\cdot}cm^{-1}$ when the surfactant and imidazole were used together. The PEG-PPG-PEG chain length was also varied to identify the best conditions for the VPP-based preparation of PEDOT thin films.

Atomic Layer Deposition Method for Polymeric Optical Waveguide Fabrication (원자층 증착 방법을 이용한 폴리머 광도파로 제작)

  • Eun-Su Lee;Kwon-Wook Chun;Jinung Jin;Ye-Jun Jung;Min-Cheol Oh
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.175-183
    • /
    • 2024
  • Research into optical signal processing using photonic integrated circuits (PICs) has been actively pursued in various fields, including optical communication, optical sensors, and quantum optics. Among the materials used in PIC fabrication, polymers have attracted significant interest due to their unique characteristics. To fabricate polymer-based PICs, establishing an accurate manufacturing process for the cross-sectional structure of an optical waveguide is crucial. For stable device performance and high yield in mass production, a process with high reproducibility and a wide tolerance for variation is necessary. This study proposes an efficient method for fabricating polymer optical-waveguide devices by introducing the atomic layer deposition (ALD) process. Compared to conventional photoresist or metal-film deposition methods, the ALD process enables more precise fabrication of the optical waveguide's core structure. Polyimide optical waveguides with a core size of 1.8 × 1.6 ㎛2 are fabricated using the ALD process, and their propagation losses are measured. Additionally, a multimode interference (MMI) optical-waveguide power-splitter device is fabricated and characterized. Throughout the fabrication, no cracking issues are observed in the etching-mask layer, the vertical profiles of the waveguide patterns are excellent, and the propagation loss is below 1.5 dB/cm. These results confirm that the ALD process is a suitable method for the mass production of high-quality polymer photonic devices.

Atmospheric Pressure Chemical Vapor Deposition을 이용한 SiOx 박막 형성

  • Kim, Ga-Yeong;Park, Jae-Beom;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.167-167
    • /
    • 2012
  • 최근 들어 유연한 폴리머 기판을 이용한 차세대 Flexible display는 다양한 장점으로 인해 많은 연구가들에 의해 유망한 차세대 디스플레이로 주목받고 있다. 일반적 폴리머 기판은 산소, 수분 등에 취약하기 때문에 무기막 또는 멀티레이어를 증착한다. 본 연구는 remote-type과 direct-type DBD로 구성되어 있는 double discharge system을 이용한 SiOx 무기막 증착 실험에 관한 연구이다. 본 연구에서는 HMDS/$O_2$/He/Ar gas mixture를 통해 발생된 대기압 플라즈마를 이용하여 공정을 진행하였다. SiOx를 증착할 때 SiOx 무기막 증착 실험은 $O_2$의 유량이 감소할수록 그리고 HMDS의 유량이 증가함에 따라 deposition rate, 즉 공정효율이 증가하는 것을 알 수 있었다. 하지만 HMDS의 유량이 증가하고 $O_2$ gas 유량이 감소함에 따라 carbon과 hydrogen 등의 불순물의 함유도 함께 증가하게 되고 이로 인해 무기막의 특성이 약해지고, 유기적인 막 특성이 강해지게 된다. Double discharge system을 사용하였을 경우에는 remote-type DBD system을 사용하였을 때 보다 더 높은 공정 효율을 관찰할 수 있었고 동시에 더 낮은 불순물 함량을 가지는 것을 알 수 있었다. 이는 기판에 추가적으로 인가되는 power에 따라 discharge efficiency가 향상되어 Si-O bond 결합을 유도, 무기막적 특성이 강해지고, 또한 기판 바이어스 효과에 따라 증착무기막의 기계적인 강도 역시 향상됨을 관찰할 수 있었다.

  • PDF

Bragg Reflecting Waveguide Device Fabricated on a Flexible Substrate using a Nano-imprinting Technology (나노임프린팅 기술을 이용한 유연성 브래그 반사 광도파로 소자)

  • Kim, Kyung-Jo;Yi, Jeong-Ah;Oh, Min-Cheol
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.149-154
    • /
    • 2007
  • Bragg reflecting waveguide devices have been fabricated on a flexible polymer substrate utilizing a post lift-off process which could Provide excellent uniformity of grating Patterns on Plastic film. The 510 m Period Bragg grating pattern is made by two methods. In the first sample the grating is fabricated by exposing the laser interference pattern on a photoresist, and then it is inscribed by $O_2$ plasma etching. The grating pattern of the second sample is formed by a PDMS soft mold imprinting process. The selective adhesion property of SU-8 material for Au and Si surfaces is utilized to prepare a 100-mm thick plastic substrate. Single mode waveguide is fabricated on the plastic substrate using polymer materials with refractive indices of 1.540 and 1.430 for the core and the cladding layers, respectively. The Bragg grating on Plastic substrate does not show any degradation in its spectral response compared to the reference sample made on a silicon wafer.

Flexibility Study of Silicon Thin Film Transferred on Flexible Substrate (폴리머 기판 위에 전사된 실리콘 박막의 기계적 유연성 연구)

  • Lee, Mi-Kyoung;Lee, Eun-Kyung;Yang, Min;Chon, Min-Woo;Lee, Hyouk;Lim, Jae Sung;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.3
    • /
    • pp.23-29
    • /
    • 2013
  • Development of flexible electronic devices has primarily focused on printing technology using organic materials. However, organic-based flexible electronics have several disadvantages, including low electrical performance and long-term reliability. Therefore, we fabricated nano- and micro-thick silicon film attached to the polymer substrate using transfer printing technology to investigate the feasibility of silicon-based flexible electronic devices with high performance and high flexibility. Flexibility of the fabricated samples was investigated using bending and stretching tests. The failure bending radius of the 200 nm-thick silicon film attached on a PI substrate was 4.5 mm, and the failure stretching strain was 1.8%. The failure bending radius of the micro-thick silicon film attached on a FPCB was 2 mm, and the failure strain was 3.5%, which showed superior flexibility compared with conventional silicon material. Improved flexibility was attributed to a buffering effect of the adhesive between the silicon film and the substrate. The superior flexibility of the thin silicon film demonstrates the possibility for flexible electronic devices with high performance.

Characteristics and Fabrication of Vertical Type Organic Light Emitting Transistors Using n-Type Organic Materials (N형 유기물질을 이용한 세로형 유기 발광트랜지스터의 제작 및 특성에 관한 연구)

  • Oh Se-Young;Kim Hee-Jeong;Jang Kyoung-Mi
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.253-258
    • /
    • 2006
  • We have fabricated vortical type organic thin film transistors (OTFTs) consisting of ITO/n type active material/Al gate/n type active material/Al using F16CuPc, NTCDA, PTCDA and PTCDI C-8. The effect of mobility of n type active materials and thin film thickness on current-voltage (I-V) characteristics and on/off ratios were investigated. The vortical type organic transistor using PTCDI C-8 exhibited low operation voltage and high on-off ratio. In addition, we have investigated the feasibility of application in organic light emitting transistor using light emitting polymer. Especially, the light emitting transistor consisting of ITO/PEDOT-PSS/P3HT/F16CuPc/Al gate/F16CuPc/Al showed the maximum quantum efficiency of 0.054.