• 제목/요약/키워드: 폴리머센서

Search Result 106, Processing Time 0.021 seconds

Photopolymerization and Properties of PCL-Based Biodegradable Molecularly Imprinted Polymers (PCL 기반 생분해성 분자 날인 고분자의 광중합 및 물성)

  • Kim, Sun-Hui;Lee, Kyung-Soo;Kim, Yong-Hoon;Choi, Woo-Jin;Kim, Beom-Soo;Kim, Eung-Kook;Kim, Dae-Su
    • Polymer(Korea)
    • /
    • v.31 no.2
    • /
    • pp.153-159
    • /
    • 2007
  • Biodegradable molecularly imprinted polymers (MIPs) can be applied in the biomedical area of biosensors, drug delivery, etc. Therefore, in this study, biodegradable theophylline MIPs were synthesized via photopolymerization using a poly $(\varepsilon-caprolactone)$ (PCL) macromer as a cross-linker and their physical properties were investigated. The yield for the synthesis of the PCL macromer with terminal acrylate groups was ca. 78 mol%. The products were characterized by the combination of FT-IR and $^1H-NMR$ spectroscopic analyses. UV/Visible spectroscopic analysis for removing and rebinding theophylline was performed by monitoring the theophylline concentration in the solution. In vitro biodegradation tests of the theophylline MIPs performed in phosphate buffered saline (PBS) solution at $37^{\circ}C$ showed good biodegradability of the MIPs.

Nanofiber Membrane based Colorimetric Sensor for Mercury (II) Detection: A Review (나노 섬유 멤브레인을 기반으로 한 수은(II) 색변화 검출 센서에 대한 총설)

  • Bhang, Saeyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.4
    • /
    • pp.241-252
    • /
    • 2021
  • Rapid industrialization with growing population leads to environmental water pollution. Demand in generation of clean water from waste water is ever increasing by scarcity of rain water due to change in weather pattern. Colorimetric detection of heavy metal present in clean water is very simple and effective technique. In this review membrane based colorimetric detection of mercury (II) ions are discussed in details. Membrane such as cellulose, polycaprolactone, chitosan, polysulfone etc., are used as support for metal ion detection. Nanofiber based materials have wide range of applications in energy, environment and biomedical research. Membranes made up of nanofiber consist up plenty of functional groups available in the polymer along with large surface area and high porosity. As a result, it is easy for surface modification and grafting of ligand on the fiber surface enhanced nanoparticles attachment.

Analysis of the Characteristics of Polyurethane Synthesis Using Quartz Crystal Analyzer (수정진동자 분석기를 이용한 폴리우레탄 합성반응의 특성분석)

  • Cho, Hong-Sik;Park, Jin-Young;Han, Dae-Sang;Park, Ji-Sun;Lee, Hang-Ja;Kim, Kwang;Chang, Sang-Mok
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.28-35
    • /
    • 2000
  • In this study, we investigated the characteristics of polyurethane synthesis by simultaneously measuring resonant frequency and resonant resistance with a quartz crystal analyzer. The rapid decrease of resonant frequency was appeared because automatic catalytic reaction was caused by the polyurethane formed in initial stage of polyurethane synthesis. In prepolymer(PP) synthesis, the resonant frequency was slowly stabilized after a rapid decrease at a certain point of time. But in segmented polyurethane synthesis in which chain-extender was involved, the resonant frequency increased again after a rapid decrease at a certain point of time. It was considered that this tendency took place because the chain-extender, 1,4-butandiol, caused a soft segment to change to a hard segment. The resonant resistance was used in the analysis of mechanism. From the results, the characteristics of polyurethane synthesis could be analyzed on-line using a quartz crystal analyzer, and the synthesis mechanism could also be interpreted.

  • PDF

Surface modification of Poly-(dimethylsiioxane) using polyelectrolYte multilayers and its characterization (다층의 고분자 전해질을 이용한 Poly-(dimetnylsiloxane)의 표면 개질 및 특성)

  • Shim, Hyun-Woo;Lee, Chang-Hee;Lee, Ji-Hye;Hwang, Taek-Sung;Lee, Chang-Soo
    • KSBB Journal
    • /
    • v.23 no.3
    • /
    • pp.263-270
    • /
    • 2008
  • A poly-(dimethylsiloxane) (PDMS) surface modified by the successive deposition of the polyelectrolytes, poly-(allylamine hydrochloride) (PAH), poly-(diallyldimethylammoniumchloride) (PDAC), poly-(4-ammonium styrenesulfonic acid) (PSS), and poly-(acrylic acid) (PAA), was presented for the application of selective cell immobilization. It is formed via electrostatic attraction between adjacent layers of opposite charge. The modified PDMS surface was examined using static contact angle measurements and fourier transform infrared (FT-IR) spectrophotometer. The wettability of the PDMS surface could be easily controlled and functionalized to be biocompatible through regulation of layer numbers. The modified PDMS surface provides appropriate environment for adhesion to cells, which is essential technology for cell patterning with high yield and viability in the patterning process. This method is reproducible, convenient, and rapid. It could be applied to the fabrication of biological sensing, patterning, microelectronics devices, screening system, and study of cell-surface interaction.

Preparation of IPN-type Polyelectrolyte Films Attached to the Electrode Surface and Their Humidity-Sensitive Properties (전극 표면에 부착된 IPN 형태의 전해질 고분자의 제조 및 그들의 감습특성)

  • Han, Dae-Sang;Gong, Myoung-Seon
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.565-573
    • /
    • 2010
  • Copoly(2-(dimethylamino)ethyl methacrylate)(DAEMA)/butyl acrylate (BA) and copoly(methyl methacrylate)(MMA)/BA/2-(cinnamoyloxy)ethyl methacryate (CEMA), which were cross-linked with dibromoalkane and UV irradiation, respectively, were prepared for the precursors of interpenetrating polymer network (IPN) humidity-sensitive films. 3-(Triethoxysilyl)propyl cinnamate (TESPC) was used as a surface-pretreating agent for the attachment of IPN-polyelectrolyte to the electrode surface by UV irradiation. Humidity sensitive polymeric thin films with an IPN structure were prepared by crosslinking reactions of copoly(DAEMA/BA) with 1,4-dibromobutane (DBB) and copoly(MMA/BA/CEMA) by UV-irradiation. The anchoring of an IPN-polyelectrolyte into the substrate was carried out via the photochemical $[2{\pi}+2{\pi}]$ cycloaddition. The resulting humidity sensors showed a high sensitivity in the range of 20~95%RH and a small hysteresis (<1.5%RH). The response time for adsorption and desorption process at 33~94%RH was 48 and 65 s, respectively, indicating a fast response. The effects of the concentration of copolymers, molar ratio of crosslinking agents and time of the precursor solution for dip-coating on their humidity sensitive properties including water durability were investigated.

Experimental Study on Fabrication of AZO Transparent Electrode for Organic Solar Cell Using Selective Low-Temperature Atomic Layer Deposition (저온 선택적 원자층 증착공정을 이용한 유기태양전지용 AZO 투명전극 제조에 관한 실험적 연구)

  • Kim, Ki-Cheol;Song, Gen-Soo;Kim, Hyung-Tae;Yoo, Kyung-Hoon;Kang, Jeong-Jin;Hwang, Jun-Young;Lee, Sang-Ho;Kang, Kyung-Tae;Kang, Heui-Seok;Cho, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.577-582
    • /
    • 2013
  • AZO (aluminum-doped zinc oxide) is one of the best candidate materials to replace ITO (indium tin oxide) for TCOs (transparent conductive oxides) used in flat panel displays, organic light-emitting diodes (OLEDs), and organic solar cells (OSCs). In the present study, to apply an AZO thin film to the transparent electrode of an organic solar cell, a low-temperature selective atomic layer deposition (ALD) process was adopted to deposit an AZO thin film on a flexible poly-ethylene-naphthalate (PEN) substrate. The reactive gases for the ALD process were di-ethyl-zinc (DEZ) and tri-methyl-aluminum (TMA) as precursors and H2O as an oxidant. The structural, electrical, and optical characteristics of the AZO thin film were evaluated. From the measured results of the electrical and optical characteristics of the AZO thin films deposited on the PEN substrates by ALD, it was shown that the AZO thin film appeared to be comparable to a commercially used ITO thin film, which confirmed the feasibility of AZO as a TCO for flexible organic solar cells in the near future.