• Title/Summary/Keyword: 폭염지수

Search Result 41, Processing Time 0.029 seconds

A study on the characteristics of cyanobacteria in the mainstream of Nakdong river using decision trees (의사결정나무를 이용한 낙동강 본류 구간의 남조류 발생특성 연구)

  • Jung, Woo Suk;Jo, Bu Geon;Kim, Young Do;Kim, Sung Eun
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.312-320
    • /
    • 2019
  • The occurrence of cyanobacteria causes problems such as oxygen depletion and increase of organic matter in the water body due to mass prosperity and death. Each year, Algae bloom warning System is issued due to the effects of summer heat and drought. It is necessary to quantitatively characterize the occurrence of cyanobacteria for proactive green algae management in the main Nakdong river. In this study, we analyzed the major influencing factors on cyanobacteria bloom using visualization and correlation analysis. A decision tree, a machine learning method, was used to quantitatively analyze the conditions of cyanobacteria according to the influence factors. In all the weirs, meteorological factors, temperature and SPI drought index, were significantly correlated with cyanobacterial cell number. Increasing the number of days of heat wave and drought block the mixing of water in the water body and the stratification phenomenon to promote the development of cyanobacteria. In the long term, it is necessary to proactively manage cyanobacteria considering the meteorological impacts.

Estimation of Fresh Weight, Dry Weight, and Leaf Area Index of Soybean Plant using Multispectral Camera Mounted on Rotor-wing UAV (회전익 무인기에 탑재된 다중분광 센서를 이용한 콩의 생체중, 건물중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Kang, Kyeong-Suk;Kang, Dong-Woo;Zou, Kunyan;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.327-336
    • /
    • 2019
  • Soybean is one of the most important crops of which the grains contain high protein content and has been consumed in various forms of food. Soybean plants are generally cultivated on the field and their yield and quality are strongly affected by climate change. Recently, the abnormal climate conditions, including heat wave and heavy rainfall, frequently occurs which would increase the risk of the farm management. The real-time assessment techniques for quality and growth of soybean would reduce the losses of the crop in terms of quantity and quality. The objective of this work was to develop a simple model to estimate the growth of soybean plant using a multispectral sensor mounted on a rotor-wing unmanned aerial vehicle(UAV). The soybean growth model was developed by using simple linear regression analysis with three phenotypic data (fresh weight, dry weight, leaf area index) and two types of vegetation indices (VIs). It was found that the accuracy and precision of LAI model using GNDVI (R2= 0.789, RMSE=0.73 ㎡/㎡, RE=34.91%) was greater than those of the model using NDVI (R2= 0.587, RMSE=1.01 ㎡/㎡, RE=48.98%). The accuracy and precision based on the simple ratio indices were better than those based on the normalized vegetation indices, such as RRVI (R2= 0.760, RMSE=0.78 ㎡/㎡, RE=37.26%) and GRVI (R2= 0.828, RMSE=0.66 ㎡/㎡, RE=31.59%). The outcome of this study could aid the production of soybeans with high and uniform quality when a variable rate fertilization system is introduced to cope with the adverse climate conditions.

Assessment of Extreme Cases of Climate Change Impact on Water Balance and Water Quality Behavior in Geum River Basin using SWAT (SWAT을 이용한 극한 기후변화 사상에 따른 금강유역의 수문·수질 거동 평가)

  • Kim, Yong Won;Lee, Ji Wan;Kim, Won Jin;Woo, So Young;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.105-105
    • /
    • 2018
  • 2017년 이상기후 보고서에 따르면, 지난해 장마기간(6월 24일~7월 29일) 동안 전국 평균 강수량은 291.7mm로 평년(356.1mm)의 81%에 그쳤고, 7월 전국 평균기온은 $26.4^{\circ}C$로 평년($24.5^{\circ}C$) 보다 $1.9^{\circ}C$ 높았으며, 폭염일수는 평년대비 1.5배 많았음을 보고했다. 이러한 극심한 기후변화는 유역환경에 영향을 미쳐 미래 수자원 계획과 관리에 어려움을 가중시킬 것으로 예상된다. 이에 본 연구에서는 금강유역($9,865km^2$)을 대상으로 SWAT(Soil and Water Assessment Tool)모형과 RCP(Representative Concentration Pathway) 기후변화 시나리오를 이용하여 극한 기후변화 사상에 따른 수문 수질 거동을 평가하고자 하였다. 유역의 물수지 분석을 위해 금강 유역을 표준단위유역으로 구분 하였고, 기상자료와 다목적댐 2개(대청댐, 용담댐)과 다기능 보 3개(공주보, 백제보, 세종보)의 운영 자료와 국가 수자원관리 종합 정보 시스템(WAMIS)에서 관측 및 관리하고 있는 수문, 기상 자료를 수집하였다. SWAT 모형의 신뢰성 있는 수문 및 수질 보정을 위해 금강 소유역 내 위치하는 다목적 댐 2개 및 다기능 보 3개의 실측 방류랑을 이용하여 댐 운영모의를 하였으며, 댐 운영 자료와 수질 자료를 이용하여 모형의 검정 및 보정(2000~2015)을 실시하였다. 미래 극한 기후변화 사상을 모의하기 위해 기후변화 시나리오는 APCC의 26개 CMIP5 GCM 자료 중 RCP 8.5 시나리오를 활용했으며, 극한 기후 시나리오 선정을 위해 STARDEX에서 제시한 강우관련 극한지수를 이용했다. 선정된 홍수 및 가뭄 시나리오에 대해 Historical기간(1976~2005)과 미래기간(2006~2099)을 설정하여 미래 극한 기후변화 사상에 따른 금강유역의 수문 및 수질의 거동을 평가하였다.

  • PDF

A Study on the Characteristics of Cyanobacteria in the Downstream of Nakdong River Considering the Meteorological Effects (기상학적 영향을 고려한 낙동강 하류 녹조 발생특성 연구)

  • Jung, Woo Suk;Kim, Young Do;Kim, Sung Eun;Ki, Seo Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.110-110
    • /
    • 2020
  • 최근 낙동강유역에서는 여름철 폭염 및 가뭄의 영향으로 조류대경보가 발령되고 있으며, 급격한 수질환경적 변화가 이루어지고 있다. 본 연구대상유역인 낙동강에서도 가뭄으로 인해 녹조가 발생하여 조류경보가 발령되었다. 남조류의 대발생은 대량 번성 및 사멸에 따라 수체 내 산소 고갈 및 유기물 증가와 같은 문제를 야기하고 있다. 또한 남조류가 분비하는 독성물질 또한 수생태계와 인체에 유해하다. 그리고 인체에는 무해하다고 밝혀졌지만 수돗물 등에서 흙냄새와 같은 좋지 않은 냄새를 유발하는 냄새물인 지오스민, 2-MIB을 분비하여 정수공급체계의 악영향을 미친다. 본 연구대상 지점인 낙동강은 다기능 보 건설로 인해 하천 수심이 증가하고 유속이 느려지면서 정체성 수역 특성을 나타내고 있다. 이는 호소성 수역 특성을 나타내고 있음과 동시에 녹조발생과 같은 수질환경적 변화가 이루어지고 있다는 것을 의미한다. 본 연구에서 시각화 분석을 통해 낙동강 하류 남조류 발생현황을 분석하였으며, 랜덤포레스트를 이용하여 지점별 남조류 발생 주요 영향인자를 도출하였다. 조류경보제 발생 등급은 발령기준으로 관심, 위험, 대발생으로 구분된다. 학습데이터로 관심단계 기준인 남조류세포수 1,000 cell/mL 보다 작게 측정된 데이터들은 관심미만의 데이터로 Normal 등급으로 구분하였다. 구분된 발생등급을 범주형 변수로 설정하여 학습 데이터를 통해 모형을 구축하고 검증 데이터를 이용하여 모형 정확성을 평가하였다. 본 연구를 통해 조류발생 주요 영향인자를 도출하고 변수별 중요도를 평가를 통해 지점별 녹조 발생특성을 비교 분석하였다.

  • PDF

Development of Comprehensive Diagnostic System for Disaster in Decline Areas (쇠퇴지역 재난재해 종합진단 시스템 프로토타입 개발)

  • Shin, Yonghyeon;Lee, Sangmin;Yang, Dongmin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.479-479
    • /
    • 2021
  • 최근 기상이변으로 인한 자연재해 발생이 증가하고 있고, 그에 따라 도시의 재난 대응력 강화가 국내에서는 물론 국제적으로도 중요한 이슈가 되고 있다. 특히 쇠퇴지역은 재난재해 발생 시 인적·물적 피해가 일반 지역 보다 상대적으로 크며, 복구에도 많은 시간과 예산이 소요되므로 대응책 마련을 위한 도시재생지역의 정밀한 재난재해의 위험성 분석 기술이 필요하다. 이에 본 연구에서는 도시재생사업 대상지(311개)에 대한 재난재해 유형별 위험성 및 회복성을 종합적으로 분석하는 종합진단 기법을 개발하고, 이를 적용한 프로토타입 시스템을 개발하였다. 재난재해의 범위는 「재난 및 안전관리 기본법」을 준용하여 이에 도시재생사업 시행에 영향을 받아 재난재해 발생에 따른 위험정도가 변화할 가능성이 높은 자연재해 (폭우, 폭염, 폭설, 강풍, 지진)5종과 사회재난 (화재, 붕괴, 폭발) 3종 총 8종으로 정의하였다. 종합진단 기법은 기후변화에 관한 정부간 협의체(IPCC) 위험도 평가 방법을 준용하여 위험요소 (위해성·취약성·노출성)와 대비·대응요소 (회복성)로 구분하고, 전문가 자문회의를 거쳐 재난재해에 특히 취약한 쇠퇴지역의 특성을 반영할 수 있는 종합진단지수 산정식을 개발하였다. 또한 쇠퇴지역 재난재해 종합진단 시스템은 도시재생 업무를 수행하는 사용자가 신속히 정보를 분석하고 활용에 용이하도록 Web-GIS 기반으로 설계하였으며, 종합진단 기법에 의해 산정된 분석결과를 100m × 100m 격자 단위의 등급으로 가시화한다. 분석 결과는 지속적인 연구 개발을 통해 최적의 도시재생사업 의사결정 지원 서비스를 위한 기초 분석 자료로 연계하여 활용되며, 분석 DB는 클라우드 서비스 기반의 도시재생 데이터 플랫폼을 통해 공유된다.

  • PDF

Spatial Analysis of Typhoon Genesis Distribution based on IPCC AR5 RCP 8.5 Scenario (IPCC AR5 RCP 8.5 시나리오 기반 태풍발생 공간분석)

  • Lee, Sungsu;Kim, Ga Young
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.49-58
    • /
    • 2014
  • Natural disasters of large scale such as typhoon, heat waves and snow storm have recently been increased because of climate change according to global warming which is most likely caused by greenhouse gas in the atmosphere. Increase of greenhouse gases concentration has caused the augmentation of earth's surface temperature, which raised the frequency of incidences of extreme weather in northern hemisphere. In this paper, we present spatial analysis of future typhoon genesis based on IPCC AR5 RCP 8.5 scenario, which applied latest carbon dioxide concentration trend. For this analysis, we firstly calculated GPI using RCP 8.5 monthly data during 1982~2100. By spatially comparing the monthly averaged GPIs and typhoon genesis locations of 1982~2010, a probability density distribution(PDF) of the typhoon genesis was estimated. Then, we defined 0.05GPI, 0.1GPI and 0.15GPI based on the GPI ranges which are corresponding to probability densities of 0.05, 0.1 and 0.15, respectively. Based on the PDF-related GPIs, spatial distributions of probability on the typhoon genesis were estimated for the periods of 1982~2010, 2011~2040, 2041~2070 and 2071~2100. Also, we analyzed area density using historical genesis points and spatial distributions. As the results, Philippines' east area corresponding to region of latitude $10^{\circ}{\sim}20^{\circ}$ shows high typhoon genesis probability in future. Using this result, we expect to estimate the potential region of typhoon genesis in the future and to develop the genesis model.

Effects of Pad Cooling Systems in Tunnel-Ventilated Broiler House on Reducing Indoor Temperature and Level of Temperature-Humidity Index during Summer (국내 터널식환기 무창 육계사에서 여름철 쿨링패드 사용에 따른 계사 내부 온도 저감 효과 및 더위지수(THI)에 미치는 영향)

  • Hye Ran Kim;Seol Hwa Park;Jisoo Wi;Seongshin Lee;Sung Dae Lee;Hwan Ku Kang;Chaehwa Ryu
    • Korean Journal of Poultry Science
    • /
    • v.51 no.2
    • /
    • pp.57-63
    • /
    • 2024
  • As global warming worsens, it is feared that higher ambient temperatures and relative humidity might result in a more intense heat stress for livestock animals, especially broilers, which lack sweat glands for thermoregulation and have been selectively bred for rapid growth. Therefore, strategic livestock management is needed to mitigate the adverse effects of heat stress on broilers. In Korea's poultry farming systems, tunnel-ventilated broiler houses and pad cooling systems are commonly installed to lower indoor temperatures during the summer. However, caution is advised with pad cooling systems as they can increase the humidity inside the houses, potentially causing further harm. This study aimed to evaluate the effectiveness of pad cooling systems in tunnel-ventilated broiler house by assessing the reduction in indoor temperature using the Temperature-Humidity Index (THI), which accounts for the impact of relative humidity. Temperature and humidity data were collected during the summer (Jun to Sep) from eight farms with tunnel-ventilated broiler house located in different regions of Korea. The farms were divided into two groups based on the use of pad cooling systems is used, and temperature and humidity data, along with THI values, were analyzed two weeks before the birds were marketed. Meta-analysis results showed that at the hottest time of the day, 14:00, farms with pad cooling systems had significantly lower indoor temperatures compared to the control group, but observed an increase in indoor temperatures by 16:00 (p<0.05). There is no significant difference in relative humidity (p>0.05). The THI values decreased in the treatment group with cooling pads compared to the control group starting from 15:00, suggesting a diminished effect (p<0.05). This study indicates the potential for developing optimal operational guidelines for cooling pads to reduce heat stress in broilers during the summer season.

The Effects of Pergola Wisteria floribunda's LAI on Thermal Environment (그늘시렁 Wisteria floribunda의 엽면적지수가 온열환경에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.115-125
    • /
    • 2017
  • This study was to investigate the user's thermal environments under the pergola($L\;7,200{\times}W\;4,200{\times}H\;2,700mn$) covered with Wisteria floribunda(Willd.) DC. according to the variation of leaf area index(LAI). We carried out detailed measurements with two human-biometeorological stations on a popular square Jinju, Korea($N35^{\circ}10^{\prime}59.8^{{\prime}{\prime}}$, $E\;128^{\circ}05^{\prime}32.0^{{\prime}{\prime}}$, elevation: 38m). One of the stations stood under a pergola, while the other in the sun. The measurement spots were instrumented with microclimate monitoring stations to continuously measure air temperature and relative humidity, wind speed, shortwave and longwave radiation from the six cardinal directions at the height of 0.6m so as to calculate the Universal Thermal Climate Index(UTCI) from $9^{th}$ April to $27^{th}$ September 2017. The LAI was measured using the LAI-2200C Plant Canopy Analyzer. The analysis results of 18 day's 1 minute term human-biometeorological data absorbed by a man in sitting position from 10am to 4pm showed the following. During the whole observation period, daily average air temperatures under the pergola were respectively $0.7{\sim}2.3^{\circ}C$ lower compared with those in the sun, daily average wind speed and relative humidity under the pergola were respectively 0.17~0.38m/s and 0.4~3.1% higher compared with those in the sun. There was significant relationship in LAI, Julian day number and were expressed in the equation $y=-0.0004x^2+0.1719x-11.765(R^2=0.9897)$. The average $T_{mrt}$ under the pergola were $11.9{\sim}25.4^{\circ}C$ lower and maximum ${\Delta}T_{mrt}$ under the pergola were $24.1{\sim}30.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average $T_{mrt}$ compared with those in the sun and was expressed in the equation $y=0.0678{\ln}(x)+0.3036(R^2=0.9454)$. The average UTCI under the pergola were $4.1{\sim}8.3^{\circ}C$ lower and maximum ${\Delta}UTCI$ under the pergola were $7.8{\sim}10.2^{\circ}C$ when compared with those in the sun. There was significant relationship in LAI, reduction ratio(%) of daily average UTCI compared with those in the sun and were expressed in the equation $y=0.0322{\ln}(x)+0.1538(R^2=0.8946)$. The shading by the pergola covered with vines was very effective for reducing daytime UTCI absorbed by a man in sitting position at summer largely through a reduction in mean radiant temperature from sun protection, lowering thermal stress from very strong(UTCI >$38^{\circ}C$) and strong(UTCI >$32^{\circ}C$) down to strong(UTCI >$32^{\circ}C$) and moderate(UTCI >$26^{\circ}C$). Therefore the pergola covered with vines used for shading outdoor spaces is essential to mitigate heat stress and can create better human thermal comfort especially in cities during summer. But the thermal environments under the pergola covered with vines during the heat wave supposed to user "very strong heat stress(UTCI>$38^{\circ}C$)". Therefore users must restrain themselves from outdoor activities during the heat waves.

An Assessment of Applicability of Heat Waves Using Extreme Forecast Index in KMA Climate Prediction System (GloSea5) (기상청 현업 기후예측시스템(GloSea5)에서의 극한예측지수를 이용한 여름철 폭염 예측 성능 평가)

  • Heo, Sol-Ip;Hyun, Yu-Kyung;Ryu, Young;Kang, Hyun-Suk;Lim, Yoon-Jin;Kim, Yoonjae
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.257-267
    • /
    • 2019
  • This study is to assess the applicability of the Extreme Forecast Index (EFI) algorithm of the ECMWF seasonal forecast system to the Global Seasonal Forecasting System version 5 (GloSea5), operational seasonal forecast system of the Korea Meteorological Administration (KMA). The EFI is based on the difference between Cumulative Distribution Function (CDF) curves of the model's climate data and the current ensemble forecast distribution, which is essential to diagnose the predictability in the extreme cases. To investigate its applicability, the experiment was conducted during the heat-wave cases (the year of 1994 and 2003) and compared GloSea5 hindcast data based EFI with anomaly data of ERA-Interim. The data also used to determine quantitative estimates of Probability Of Detection (POD), False Alarm Ratio (FAR), and spatial pattern correlation. The results showed that the area of ERA-Interim indicating above 4-degree temperature corresponded to the area of EFI 0.8 and above. POD showed high ratio (0.7 and 0.9, respectively), when ERA-Interim anomaly data were the highest (on Jul. 11, 1994 (> $5^{\circ}C$) and Aug. 8, 2003 (> $7^{\circ}C$), respectively). The spatial pattern showed a high correlation in the range of 0.5~0.9. However, the correlation decreased as the lead time increased. Furthermore, the case of Korea heat wave in 2018 was conducted using GloSea5 forecast data to validate EFI showed successful prediction for two to three weeks lead time. As a result, the EFI forecasts can be used to predict the probability that an extreme weather event of interest might occur. Overall, we expected these results to be available for extreme weather forecasting.

The Effect of Shading on Pedestrians' Thermal Comfort in the E-W Street (동-서 가로에서 차양이 보행자의 열적 쾌적성에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.6
    • /
    • pp.60-74
    • /
    • 2018
  • This study was to investigate the pedestrian's thermal environments in the North Sidewalk of E-W Street during summer heatwave. We carried out detailed measurements with four human-biometeorological stations on Dongjin Street, Jinju, Korea ($N35^{\circ}10.73{\sim}10.75^{\prime}$, $E128^{\circ}55.90{\sim}58.00^{\prime}$, elevation: 50m). Two of the stations stood under one row street tree and hedge(One-Tree), two row street tree and hedge (Two-Tree), one of the stations stood under shelter and awning(Shelter), while the other in the sun (Sunlit). The measurement spots were instrumented with microclimate monitoring stations to continuously measure microclimate, radiation from the six cardinal directions at the height of 1.1m so as to calculate the Universal Thermal Climate Index (UTCI) from 24th July to 21th August 2018. The radiant temperature of sidewalk's elements were measured by the reflective sphere and thermal camera at 29th July 2018. The analysis results of 9 day's 1 minute term human-biometeorological data absorbed by a man in standing position from 10am to 4pm, and 1 day's radiant temperature of sidewalk elements from 1:16pm to 1:35pm, showed the following. The shading of street tree and shelter were mitigated heat stress by the lowered UTCI at mid and late summer's daytime, One-Tree and Two-Tree lowered respectively 0.4~0.5 level, 0.5~0.8 level of the heat stress, Shelter lowered respectively 0.3~1.0 level of the heat stress compared with those in the Sunlit. But the thermal environments in the One-Tree, Two-Tree and Shelter during the heat wave supposed to user "very strong heat stress" while those in the Sunlit supposed to user "very strong heat stres" and "exterme heat stress". The main heat load temperature compared with body temperature ($37^{\circ}C$) were respectively $7.4^{\circ}C{\sim}21.4^{\circ}C$ (pavement), $14.7^{\circ}C{\sim}15.8^{\circ}C$ (road), $12.7^{\circ}C$ (shelter canopy), $7.0^{\circ}C$ (street funiture), $3.5^{\circ}C{\sim}6.4^{\circ}C$ (building facade). The main heat load percentage were respectively 34.9%~81.0% (pavement), 9.6%~25.2% (road), 24.8% (shelter canopy), 14.1%~15.4% (building facade), 5.7% (street facility). Reducing the radiant temperature of the pavement, road, building surfaces by shading is the most effective means to achieve outdoor thermal comfort for pedestrians in sidewalk. Therefore, increasing the projected canopy area and LAI of street tree through the minimal training and pruning, building dense roadside hedge are essential for pedestrians thermal comfort. In addition, thermal liner, high reflective materials, greening etc. should be introduced for reducing the surface temperature of shelter and awning canopy. Also, retro-reflective materials of building facade should be introduced for the control of reflective sun radiation. More aggressively pavement watering should be introduced for reducing the surface temperature of sidewalk's pavement.