• Title/Summary/Keyword: 폭발압력

Search Result 332, Processing Time 0.025 seconds

Theoretical calculation of the parameters influencing on the performance of high explosives (고성능폭약의 성능에 영향을 미치는 요소들의 이론적 계산)

  • 권상기
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.218-226
    • /
    • 2000
  • In order to determine the performance of an explosive, various parameters such as the detonation pressure, detonation velocity, heat generation, and fume generation of the explosive should be accurately described. In this study, the pressure increase, volume expansion, temperature increase, and detonation velocity of high explosives were tried to determined theoretically based on thermochemical theories. From this study, a Fortran program for calculating the explosion parameters, which can influence on the performance of explosives, was developed and applied to the high-explosives, ANFO and NG.

  • PDF

Fire and Explosive Characteristics in Suspended Dust of Acrylic Polymer (Acrylic Polymer 부유분진의 화재.폭발 특성)

  • Lee, Su-Hee;Lee, Keun-Won;Han, In-Soo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.466-469
    • /
    • 2011
  • Acrylic Polymer는 충격보강재 및 가공조제 등의 용도로 다양한 산업현장에서 사용되어지고 있는데, 본 제품 제조회사에서 고객사로 제품 납품 후 원료 투입 중 분진폭발이 발생하여 본 위험성평가를 의뢰하였다. 분진의 위험 특성에 대한 분석은 일반적으로 퇴적분진(Dust Layers)와 부유분진(Dust Clouds)으로 구별되어진다. 본 연구에서는 스위스 Kuhner사에서 제작된 분진폭발장치를 이용하여 아크릴 부유분진의 화재.폭발위험성에 대하여 고찰하였다. Acrylic Polymer 부유분진의 폭발위험성은 최대폭발압력 약 6bar, 최대폭발압력상승속도 67 bar/s, Kst 값은 $18m{\cdot}bar/s$로 폭발등급으로 구분하면 St1 [0$bar{\cdot}m/s$]으로 분류되어 "폭발에 의한 위험성이 낮은 분진"에 속하며, 최소점화에너지(MIE)는 300 mJ < MIE < 1,000 mJ로 Normal Sensitivity로서 정전기와 같은 점화원 제거만으로도 어느 정도 충분히 폭발 등을 방지 할 수 있을 것으로 판단된다.

  • PDF

전기화재 원인과 발생-3

  • 김미승
    • Electric Engineers Magazine
    • /
    • v.245 no.1
    • /
    • pp.22-25
    • /
    • 2003
  • 분해폭발이란 예를 들면 석유화학공업과 다량으로 취급하고 있는 에칠렌, 산화에칠렌이나 금속의 용접, 절단에 널리 사용하고 있는 아세틸렌 등이 어떤 조건하에서 이해하는 경우가 있고 이 때에는 상당히 큰 발열을 동반하기 때문에 분해에 의해 생성된 가스가 열팽창되고 이 때 생기는 압력상승과 이 압력의 방출에 의해 폭발이 일어난다.

  • PDF

Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part B: Analysis for the Effect of Explosion Loading Time According to the Natural Period for Target Structures - (폭발하중 이력 특성에 따른 판 구조물의 동적응답 평가 - Part B: 고유주기에 따른 폭발하중 지속시간의 영향 분석 -)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, YongHee;Choi, JaeWoong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.197-205
    • /
    • 2015
  • Offshore structures for the gas production are exposed to the risk of gas leaks, and gas explosions can result in fatal damages to the primary structures as well as secondary structures. To minimize the damage from the critical accidents, the study of the dynamic response of structural members subjected to blast loads must be conducted. Furthermore, structural dynamic analysis has to be performed considering relationships between the natural frequency of structural members and time duration of the explosion loading because the explosion pressure tends to increase and dissipate within an extremely short time. In this paper, the numerical model based on time history data were proposed considering the negative phase pressure in which considerable negative phase pressures were observed in CFD analyses of gas explosions. The undamped single degree of freedom(SDOF) model was used to characterize the dynamic response under the blast loading. A blast wall of FPSO topside was considered as an essential structure in which the wall prevents explosion pressures from the process area to utility and working areas. From linear/nonlinear transient analyses using LS-DYNA, it was observed that dynamic responses of structures were influenced by significantly the negative time duration.

Influence of the Magnesium Content on the Explosion Properties of Mg-Al Alloy Dusts (Mg-Al합금 분진의 폭발특성에 미치는 마그네슘 성분의 영향)

  • Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.1-6
    • /
    • 2012
  • Using the Siwek 20 L spherical explosion vessel, the explosion properties have been examined to understand the influence of magnesium content in Mg-Al alloy dusts with different concentration. For this purpose, the Mg-Al alloy dusts (volume mean diameter : $151{\sim}160{\mu}m$) with magnesium content ratio were used. As the results, the increase of Mg content in Mg-Al alloy causes an decreased minimum explosion concentration and an increased maximum explosion pressure. Also the maximum explosion pressure and maximum rate of pressure rise in Mg-Al alloy dusts mainly depended on the dust concentrations. However, for the explosion index (Kst) of Mg-Al (40:60 wt%), Mg-Al (50:50 wt%) and Mg-Al (60:40 wt%), it was founded to increase the Kst with increasing of magnesium content ratio.

The Development of Pyrotechnically Releasable Mechanical Linking Device Using Pressure Cartridge (압력카트리지를 이용한 파이로 분리장치 개발)

  • Kim, Dong-Jin;Lee, Yeung-Jo;Ko, Young-Kyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.340-343
    • /
    • 2011
  • Explosive bolts are reliable and efficient mechanical fastening devices having the special feature of a built-in release. The disadvantage of explosive bolt lies in that it is based on the high explosive effect of a pyrotechnic charge. The aim of the present work is to propose a pyrotechnically releasable mechanical linking device for two mechanical elements that does not suffer from such drawbacks. The pyro-lock using the pressure cartridge has the release characteristic without fragmentation and minimum pyro-shock. The present work is focused on the design, the interpretation of structure, the separation mechanism, separation force, and the results of various tests.

  • PDF

Deflagration to detonation transition by interaction between flame and shock wave in gas mixture (가스 연료와 공기 혼합물 내 압력파와 화염의 상호 작용에 의한 연소폭발천이 현상 연구)

  • Gwak, Min-Cheol;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.369-374
    • /
    • 2010
  • This paper presents a numerical investigation of the Deflagration to Detonation Transition (DDT) of flame acceleration by a shock wave in combustible gas mixture. A model consisting of the reactive compressible Navier-Stokes equations is used. The effects of viscosity, thermal conduction, species diffusion, and chemical reactions are included. Using this model, the generation of hot spots by repeated shock and flame interaction in front and back of flame and the change of detonation occurrence by various shock intensities (Ms=1.1, 1.2, 1.3) are studied. The simulations show that as the incident shock intensity increases, the Richtmyer-Meshkov (RM) instability becomes stronger and DDT occurrence time is reduced.

  • PDF

A study on the characteristics of gas explosion with vent area (밀폐공간에서 파열면에 따른 가스폭발특성에 관한 연구)

  • Kim Sang Sub;Chae Jae Ou;Jo Young Do;Jang Gi Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.53-60
    • /
    • 2003
  • Accident occurred by gas explosion in house or building causes damage on lives and properties. To avoid secondary damage, this study drew area ratio of vent area with the experiment for pressure variation with vent area versus building volume by selection of model for different size and shapes of vent area generated by explosion. In addition, Appropriate model was chosen to predict the damage by minimum pressure with the experiment of opening are shapes. This model can prevent secondary damage with the selected vent area and shape to guarantee building safety.

  • PDF

A Study on the Explosion Riskiness with Flying of Activated Carbon (활성탄의 부유중 폭발 위험성에 관한 연구)

  • 김정환;현성호;이창우;함영민
    • Fire Science and Engineering
    • /
    • v.12 no.3
    • /
    • pp.3-9
    • /
    • 1998
  • We investigated the weight loss according to temperature using TGA in order to find the thermal hazard of brand-new activated-carbon and disused activated-carbon dusts, and the properties of dust explosion in variation of the specific surface area of their dust with the same particle size. Using hartman's dust explosion apparatus which estimate dust explosion by electric ignition after making dust disperse by compressed air, dust explosion experiments have been conducted by varying concentration and size of activated carbon dust. The explosion pressure of both activated carbon increased as the specipic surface area increased. The results indicated that brand-new activated-carbon of which specific surface area was larger three to four times than that of disused activated-carbon was much easier of dust explosion.

  • PDF

A Study on the MESG of Flammable Ternary Gas Mixtures (3성분계 인화성 혼합가스의 MESG에 관한 연구)

  • Hwang, Kyungyong;Byeon, Junghwan;Rhee, Kyunam;Lee, Taeck-Kie
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.30-37
    • /
    • 2016
  • Electrical apparatuses for use in the presence of flammable gas atmospheres have to be specially designed to prevent them from igniting the explosive gas. Flameproof design implies that electrical components producing electrical sparks are contained in enclosures and withstand the maximum pressure of internal gas or vapours. In addition, any gaps in the enclosure wall have to designed in such a way that they will not transmit a gas explosion inside the enclosure to an explosive gas or vapours atmosphere outside it. In this study, we explained some of the most important physical mechanism of MESG(Maximum Experimental Safe Gap) that the jet of combustion products ejected through the flame gap to the external surroundings do not have an energy and temperature large enough to initiate an ignition of external gas or vapours. We measured the MESG and maximum explosion pressure of ternary gas mixtures(propane-acetylene-air) by the test method and procedure of IEC 60079-20-1:2010. As a result, the composition of propane gas that has lower explosive power than acetylene gas in the ternary gas mixtures makes greater effects on MESG and explosion pressure.