• Title/Summary/Keyword: 폭발물질

Search Result 372, Processing Time 0.031 seconds

Experimental and Numerical Study on the Mitigation of High Explosive Blast using Shear Thickening based Shock-Absorbing Materials (전단농화유체기반의 충격완화물질을 이용한 고폭속 폭약의 폭발파 저감에 관한 실험 및 수치해석적 연구)

  • Younghun Ko
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.1-12
    • /
    • 2023
  • A basic assessment of techniques to mitigate the risk of blast shock waves from proximity explosions was conducted. Common existing techniques include using mitigant materials to form barriers around the explosive or in the direction of propagation of the shock wave. Various explosive energy dissipation mechanisms have been proposed, and research on blast shock wave mitigation utilizing impedance differences has drawn considerable interest. In this study, shear thickening fluid (STF) was applied as a blast mitigation material to evaluate the effectiveness of STF mitigation material on explosion shock wave mitigation through explosion experiments and numerical analysis. As a result, the effectiveness of the STF mitigant material in reducing the explosion shock pressure was verified.

가연성물질의 폭발 안전 특성치 예측

  • 하동명
    • Bulletin of the Korean Institute for Industrial Safety
    • /
    • v.1 no.1
    • /
    • pp.40-48
    • /
    • 2001
  • 화학 공정 설계의 요지 가운데 하나는 공정모사 프로그램이다. 최근에는 공정모사 프로그램에 적용하기 위해 화재·폭발 특성치 연구가 활발히 진행되고 있다. 이는 공장을 건설하기 전에 안전성평가가 먼저 이루어져야 하기 때문이다. 이러한 안전성평가에 관한 관심은 더 정확한 자료뿐만 아니라 더 많은 성분에 대한 자료의 필요성을 증대시키고 있다. 공정에서 가연성물질을 취급에 있어 밸브의 조작실수, 배관접합부파손 등으로 인해 주위에 공기와 혼합되어 착화원에 의해 화재 및 폭발이 발생할 수도 있으며, 또한 유해물질이 유출되는 경우도 있다. 산업현장에서 화재 및 폭발의 위험을 최소화하기 위해서는 공정의 안전과 최적화 조작이 이루어져야 하는데, 이를 위해 우선 작업 조건 하에서 취급물질의 연소 특성치 파악이 필요하다.(중략)

  • PDF

에테르류에 대한 연소열을 이용한 폭발하한계 추산

  • 최용찬;하동명
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.387-392
    • /
    • 2001
  • 공정에서 가연성물질을 취급함에 있어 밸브의 조작실수, 배관접합부파손 등으로 인해 주위에 공기와 혼합되면 화재 및 폭발이 발생할 수도 있으며, 또한 유해물질이 유출되는 경우도 있다. 산업현장에서 화재 및 폭발의 위험을 최소화하기 위해서는 공정의 안전과 최적화 조작이 이루어 져야 하는데, 이를 위해 우선 작업 조건 하에서 취급물질의 연소 특성치 파악이 필요하다/sup 1)/.(중략)

  • PDF

연소열에 의한 폭굉하한계 예측

  • 하동명;최용찬
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2002.05a
    • /
    • pp.203-208
    • /
    • 2002
  • 일반적으로 탄화수소를 비롯해 가연성물질은 쉽게 연소하거나 폭발한다. 특히 가스는 공정에서 가연성물질을 취급에 있어 밸브의 조작실수, 배관접합부파손 등으로 인해 누출된 물질이 주위에 공기와 혼합하여 착화원에 의해 화재 및 폭발이 발생할 수도 있으며, 또한 유해물질 상태로 유출되어 인명에 피해를 주는 경우도 있다. 산업현장에서 화재 및 폭발의 위험을 최소화하기 위해서는 공정의 안전과 최적화 조작이 이루어 져야 하는데, 이를 위해 우선 작업 조건 하에서 취급물질의 연소 특성치 파악이 필요하다/sup 1)/.(중략)

  • PDF

알코올화합물의 폭발특성 및 화염온도 예측에 관한 연구

  • 하동명
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.05a
    • /
    • pp.179-184
    • /
    • 1998
  • 가연성물질의 안전한 취급을 위해서는 이들 물질의 가장 기초적인 위험 특성 자료인 폭발한계(화재안전자료)에 대한 지식을 필요로 한다. 발화원이 존재할 때 가연성가스와 공기가 혼합하여 일정 농도 범위내에서만 연소가 이루어지는데 이 혼합범위를 폭발(연소)한계(explosive(flammable) limits) 또는 연소범위라 한다. (중략)

  • PDF

Numerical Method Aimed at Multi-material Simulation of the Energetic Device (에너지 물질이 포함된 장치의 폭발 해석을 위한 다중물질 해석 방법)

  • Kim, Ki-Hong;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.274-278
    • /
    • 2011
  • We present an innovative method of multi-physics application involving energetic materials. We use an Eulerian methodology to address these problems. We have devised a new level set based tracking framework that can elegantly handle large gradients typically found in energetic response of high explosive and metals. Proper constitutive relations are employed to model the transient phases of gas, lliquid, and solid in the high strain rate regime. We use the confined and unconfined rate stick results to validate against the experimental data.

  • PDF

Evaluation of Blast Pressure Generated by an Explosion of Explosive Material (폭발성 물질의 폭발에 따른 폭발압력 평가)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.26-34
    • /
    • 2018
  • Explosions of vapor cloud formed due to the leakage from installations with flammable fuels have often occurred in Korea and foreign countries. In this study, TNT equivalency method and Multi-Energy method for vapor cloud explosion blast modelling are described and demonstrated in a case study. As TNT equivalency method is simple and direct, it has been widely used for modelling a vapor cloud explosion blast. But TNT equivalency method found to be difficult to select a proper correlation between the amount of combustion energy produced from the vapor cloud explosion and the equivalent amount of TNT to model its blast effects. Multi-Energy method assumes that the strength of vapor cloud explosion blast depends on the layout of the space where the vapor cloud is spreading. Strictly speaking, the explosive potential of a vapor cloud is dependent upon the density of the obstructed regions. In this study, Flixborough accident are analyzed as a case study to assess the applicability of TNT equivalency method and Multi-Energy method. TNT equivalency method and Multi-Energy method found to be applicable if coefficient of TNT equivalency and coefficient of strength of explosion blast are selected properly.

Comparative analysis of detonation velocity in determining product composition for high energetic molecules using stoichiometric rules (화학 양론적 규칙으로 고에너지 물질의 폭발 생성물 조성 결정에 따른 폭발속도 비교분석)

  • Kim, Hyun Jeong;Lee, Byung Hun;Cho, Soo Gyeong;Lee, Sung Kwang
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.405-410
    • /
    • 2017
  • High energetic materials (HEMs) have been used in fuels, civil engineering and architecture as well as military purposes such as explosives and propellants. The essential process for the development of new energetic compounds is to accurately calculate its detonation performances. The most typical equation for calculating the explosive performance is the Kamlet-Jacobs (K-J) equation. In the K-J equation, the parameter such as the number of moles of gaseous products at the explosion, the average molar mass of gas products, and the explosion heat greatly affect the explosion performance. These depend on the product composition for the detonation reaction. In this study, detonation products of 65 high energetic molecules (HEMs) were calculated from the various rules such as Kamlet-Jacobs, Kistiakowsky-Wilson, modified Kistiakowsky-Wilson, Springall-Roberts rules to calculate more accurate detonation velocity (Dv). In addition, they were applied to five kinds of detonation velocity equations proposed by K-J, Rothstein, Xiong, Stine and Keshavarz. The mean absolute error and root mean square error of HEMs were obtained from experimental and calculated velocity value for each method. The K-J and Xiong equation that is slightly complex showed a lower mean absolute error than the simple Rothstein and Keshavarz equation. When the mod-KW rule was applied to the Xiong equation, the detonation velocities were the most accurate. This study compared the various method of calculating the detonation velocity of HEMs to obtain accurate HEMs performance.

Prediction of Explosion Limit of Flammable Mixture by Using the Heat of Combustion (연소열을 이용한 가연성 혼합물의 폭발한계 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.19-25
    • /
    • 2006
  • Explosion limit is one of the major physical properties used to determine the fire and explosion hazards of the flammable substances. Explosion limits are used to classify flammable materials according to their relative flammability. Such a classification is important for the safe handling, storage, transportation of flammable substances. In this study, the lower explosion limits(LEL) of the flammable mixtures predicted with the appropriate use of the vapor composition and the heat of combustion of the individual components which constitute mixture. The values calculated by the proposed equations were a good agreement with literature data within a few percent. From a given results, It is to be hoped that this methodology will contribute to the estimation of the explosive properties of flammable mixtures with improved accuracy and the broader application for other flammable substances.

  • PDF

Analyses of Size of Solidified Particles in Steam Explosions of Molten Core Material (원자로 물질의 증기폭발에서 고화 입자 크기 분석)

  • Park, Ik-Kyu;Kim, Jong-Hwan;Min, Beong-Tae;Hong, Seong-Wan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.12
    • /
    • pp.1051-1060
    • /
    • 2010
  • The effect of materials on fuel coolant interactions (FCIs) was analyzed on the basis of a solidified particle size response for TROI experiments.$^{(1)}$ The solidified particle size response can provide an understanding of the relationship among the initial condition, the mixing, and an explosion. Through a comparison of the size distributions of the solidified particles in the case of explosive and non-explosive FCIs, it is revealed that an explosive FCI results in the production of a large amount of fine particles and a small amount of large particles. The material effect of the size of solidified particles was analyzed using non-explosive FCIs without losing the information on the mixing. This analysis indicates that an explosive melt includes large particles that participate in the steam explosion, whereas a nonexplosive melt includes smaller particles and finer particles.